IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re: U.S. Patent of Jingyue Ju et al.

Patent No.: 7,713,698

Application No.: 11/894,690

Title: MASSIVE PARALLEL METHOD FOR DECODING DNA AND RNA

Issue Date: May 11, 2010

Filing Date: August 20, 2007

Mail Stop PATENT BOARD Patent Trial and Appeal Board United States Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

MOTION TO WAIVE PETITION PAGE LIMIT UNDER 37 C.F.R. §42.24(a)(2)

Petitioner requests that the 60 page limit set forth in 37 C.F.R. §

42.24(a)(1)(i) for petitions requesting Inter Partes review be waived regarding the

Petition for Inter Partes Review of U.S. Patent No. 7,713,698 ("the '698 patent").

The petition requesting Inter Partes review of the '698 patent which meets the 60

page limit ("Page Limited Petition") has been filed concurrently herewith.

Attached hereto is a copy of the proposed petition exceeding the 60 page limit as

required by 37 C.F.R. § 42.24(a)(2) ("the Proposed Petition").

Substantial, material prior art is available which demonstrates that claims of the '698 patent for which review is sought are invalid. Petitioner has drafted the Page Limited Petition to provide the arguments and analysis as succinctly as possible. However, even with such succinct drafting, the 60 page limit will bar the Petitioner from making any additional grounds for invalidity. Accordingly, Petitioner respectfully submits that in the interests of justice, the 60 page limit must be waived for the present petition due to the number of invalidating and noncumulative prior art references available and due to the length and number of claims challenged. Failure to grant this petition will prevent Petitioner from raising or reasonably raising any additional grounds for invalidity such as those included in the Proposed Petition.

Although Petitioner believes that no fee is required for this Motion, the Commissioner is hereby authorized to charge any additional fees which may be required for this Motion to Deposit Account No. 18-0882.

Therefore, it is respectfully requested that this motion to waive the 60 page

limit for a Petition requesting Inter Partes review be granted.

Date: September 16, 2012

Respectfully submitted, By: <u>/Robert A. Lawler/</u>

Reinhart Boerner Van Deuren s.c. Customer No.: 22922 Telephone: (608) 229-2217 Facsimile: (414) 298-8097

Robert A. Lawler Attorney for Petitioners Registration No. 62,075

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re:U.S. Patent of Jingyue Ju et al.Patent No:7,713,698Appl. No.:11/894,690Issue Date:May 11, 2010Title:MASSIVE PARALLEL METHOD FOR DECODING DNA AND
RNA

MAIL STOP PATENT BOARD Patent Trial and Appeal Board United States Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

PETITION FOR INTER PARTES REVIEW OF U.S. PAT. NO. 7,713,698

Inter Partes review of U.S. Patent 7,713,698 ("the '698 patent") pursuant to

35 U.S.C § 311 and 37 C.F.R. §§ 42.1 to 42.123 is respectfully requested by

Illumina, Inc. ("Petitioner"). The Petitioner submits that the attached prior art

(attached as Exhibits 1002 to 1020) renders claims 1-7, 11-12, 14-15 and 17 of the

'698 patent invalid under 35 U.S.C. §§ 102(a), 102(b), 102(e) and 103(a) and raises

a reasonable likelihood that Petitioner will prevail with respect to at least one of

claims 1-7, 11-12, 14-15 and 17 of the '698 patent. Accordingly, it is requested

that *inter partes* review be instituted and that claims 1-7, 11-12, 14-15 and 17 of

the '698 patent be found invalid.

TABLE OF CONTENTS

I.	INTR	ODUCTION	1
II.	REQ 35 U.	UIREMENTS FOR <i>INTER PARTES</i> REVIEW UNDER S.C. § 312 and 37 C.F.R. §§ 42.1 - 42.123	1
III.	OVE INVA	RVIEW OF THE '698 PATENT AND SUMMARY OF ALIDATING PRIOR ART REFERENCES	.10
	1.	Summary of the '698 Patent and Invalidating Prior Art	.10
	2.	Scope and Content of the Prior Art Relating to Nucleotides and dNTPs Having Deaza-Substituted Bases	.15
	3.	Summary of the Prosecution History of the '698 Patent	.20
IV.	DETA CHA PATH OF P	AILED EXPLANATION OF PETITIONER'S BASIS FOR LLENGING CLAIMS 1-7, 11-12, 14-15 and 17 OF THE '698 ENT DEMONSTRATING A REASONABLE LIKELIHOOD REVAILING AGAINST THE CLAIMS OF THE '698 PATENT	.21
	1.	Ground for Challenge 1 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as anticipated by Tsien	.21
	2.	Ground for Challenge 2 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Tsien and Prober I	.31
	3.	Ground for Challenge 3 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as anticipated by Dower	.34
	4.	Ground for Challenge 4 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Dower and Prober I	.44
	5.	Ground for Challenge 5 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious over Rabani in view of Prober I	.46
	6.	Ground for Challenge 6 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as anticipated by Stemple II	.55

7.	Ground for Challenge 7 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple II and Anazawa	63
8.	Ground for Challenge 8 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple II and Prober I	64
9.	Ground for Challenge 9 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as anticipated by Stemple III	65
10.	Ground for Challenge 10 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple III and Prober I	66
11.	Ground for Challenge 11 - Claims 5 and 12 of the '698 patent are invalid as obvious in view of Tsien and Prober I in further view of Rabani	66
12.	Ground for Challenge 12 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Dower and Prober II	67
13.	Ground for Challenge 13 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Tsien and Prober II	69
14.	Ground for Challenge 14 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Rabani and Prober II.	69
15.	Ground for Challenge 15 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple II and Prober II.	70
16.	Ground for Challenge 16 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple III and Prober II	70
17.	Ground for Challenge 17 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Dower and Seela I	71

18.	Ground for Challenge 18 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Tsien and Seela I	72
19.	Ground for Challenge 19 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Rabani and Seela I	73
20.	Ground for Challenge 20 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple II and Seela I	73
21.	Ground for Challenge 21 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple III and Seela I	73
22.	Ground for Challenge 22 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Dower and Hobbs	74
23.	Ground for Challenge 23 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Tsien and Hobbs	75
24.	Ground for Challenge 24 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Rabani and Hobbs	76
25.	Ground for Challenge 25 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple II and Hobbs	76
26.	Ground for Challenge 26 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple III and Hobbs	77
27.	Ground for Challenge 27 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Dower and Seela II	77

28.	Ground for Challenge 28 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Tsien and Seela II	80
29.	Ground for Challenge 29 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Rabani and Seela II.	80
30.	Ground for Challenge 30 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple II and Seela II.	81
31.	Ground for Challenge 31 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Stemple III and Seela II.	81
32.	Ground for Challenge 32 - Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as obvious in view of Rosenthal and Tsien	82
CON	ICLUSION	83

V.

APPENDIX OF EXHIBITS UNDER 37 C.F.R. § 42.63

Exhibit 1001 - The '698 patent (U.S. Patent No. 7,713,698 to Jingyue Ju et al.)

Exhibit 1002 - Tsien (PCT Publication WO 91/06678 to Tsien et al.)

Exhibit 1003 - Prober I (Prober et al., Science 238, 336-341 (1987)

Exhibit 1004 - Prober II (U.S. Patent No. 5,242,796 to Prober)

Exhibit 1005 - Dower (U.S. Patent No. 5,547,839 to Dower et al.)

Exhibit 1006 - Rabani (PCT Publication WO 96/27025 to Rabani)

Exhibit 1007 - Stemple II (PCT Publication WO 00/53805 to Stemple et al.)

Exhibit 1008 - Stemple III (U.S. Patent No. 7,270,951 to Stemple et al.)

Exhibit 1009 - Stemple I (U.S. application serial no. 09/266,187 to Stemple et al.)

Exhibit 1010 - PCT Publication WO 98/33939 to <u>Anazawa et al.</u> (Japanese language version)

Exhibit 1011 - Anazawa (English translation of WO 98/33939)

Exhibit 1012 - Translation Affidavit for Anazawa

Exhibit 1013 - Hobbs (U.S. Patent No. 5,047,519 to Hobbs et al.)

Exhibit 1014 - Seela I (U.S. Patent No. 4,804,748 to Seela et al.)

Reinhart\8995605

Exhibit 1015 - Seela II (U.S. Patent No. 5,844,106 to Seela et al.)

Exhibit 1016 - <u>Saiki</u> (WO 89/11548 to <u>Saiki</u>)

Exhibit 1017 - P. Williams (U.S. Pat. No. 7,037,687 to Williams et al.)

Exhibit 1018 - J. Williams (U.S. Pat. No. 6,255,083 to Williams)

Exhibit 1019 - Canard (U.S. Pat. No. 6,001,566 to Canard)

Exhibit 1020 - Rosenthal (PCT Publication WO 93/21340 to Rosenthal et al.)

Exhibit 1021 - Declaration of George Weinstock, Ph.D ("Weinstock Decl.")

Exhibit 1022 - Excerpts from the '698 Patent File History

I. INTRODUCTION

Inter partes review of U.S. Patent No. 7,713,698 ("the '698 patent") and cancellation of claims 1-7, 11-12, 14-15 and 17 ("the challenged claims") under 35 U.S.C. §§ 102 and 103 is respectfully requested. A copy of the '698 patent is attached as Exhibit 1001. Petitioner respectfully urges that this Petition be granted and examination conducted not only with "special dispatch," but also with "priority over all other cases" in accordance with MPEP § 2661, due to the ongoing nature of the underlying litigation, discussed below.

II. <u>REQUIREMENTS FOR INTER PARTES REVIEW UNDER 35 U.S.C.</u> § 312 and 37 C.F.R. §§ 42.1 - 42.123

A) Showing of a Reasonable Likelihood of Prevailing - the Petitioner

submits that for the reasons discussed in detail below, there is a reasonable likelihood that the Petitioner will prevail with respect to the invalidity of at least one of the challenged claims as required under 35 U.S.C. § 314(a) and 37 C.F.R. § 42.108. In particular, the prior art references accompanying this Petition show that the subject matter of the challenged claims was identically disclosed in the prior art and also that each of the challenged claims would have been obvious to a person of ordinary skill in the art. Further, none of the references accompanying this petition (with the exception of <u>Dower</u>) were substantively considered by the Examiner (although several of the references, including <u>Tsien</u>, <u>Rabani</u> and <u>Stemple II</u> were only provided among an overwhelming number of references submitted to

the Examiner in several IDSes. Accordingly, Petitioner respectfully requests that the *inter partes* review of the '698 patent be granted.

B) **Format Requirements** - This Petition meets the paper, font, line spacing and margin requirements set forth 37 C.F.R. § 42.6(a).

C) Certificate of Service - Pursuant to 37 C.F.R. § 42.6(e), a certificate of service in compliance with 37 C.F.R. § 42.6(e)(iii) is located at the end of this document showing that pursuant to 35 U.S.C. § 312(a)(5) and 37 C.F.R. § 42.105(a), a copy of this petition, including all supporting documents, have been served in its entirety on the patent owner at the correspondence address of record: COOPER & DUNHAM, LLP, 30 Rockefeller Plaza, 20th Floor, New York, NY 10112. Pursuant to 37 C.F.R. § 42.105(a), additional copies have been served on the patent owner at the following additional addresses: SHAW KELLER LLP, 300 Delaware Avenue, Suite 1120, Wilmington, DE 19801, and MEDLEN & CARROLL, LLP, 100 Grandview Road, Suite 403, Braintree, MA 02184.

D) **Mandatory Notices** - As required by 37 C.F.R. § 42.8, Petitioner hereby files the following notices:

i) <u>Real party-in-interest under 37 C.F.R. § 42.8(b)(1)</u> - The real party in interest is Petitioner, Illumina, Inc. ("Illumina").

ii) <u>Related matters under 37 C.F.R. § 42.8(b)(2)</u> - The '698 patent is the subject of the litigation styled *The Trustees of Columbia University in the City of*

New York v. *Illumina, Inc.,* 1:12-cv-00376-UNA, currently pending in the United States District Court for the District of Delaware. The Patent Owner alleges that Illumina has infringed and continues to infringe the '698 patent.

Further, a petition for *inter partes* review of legally related U.S. Patent No. 7,790,869 has been contemporaneously filed with the present petition.

iii) Lead and backup counsel under 37 C.F.R. § 42.8(b)(3) - Pursuant to 37
C.F.R. § 42.10, Petitioner designates Robert Lawler, Registration No. 62,075, as
lead counsel, and James Morrow, Registration No. 32,505, as back-up counsel, and
the requisite power of attorney accompanies this petition.

iv) <u>Service Address under 37 C.F.R. § 42.8(b)(4)</u> - Petitioner may be served electronically at <u>ipadmin@reinhartlaw.com</u>, and by postal mail and by hand delivery at Reinhart, Boerner, Van Deuren s.c., 1000 North Water St., Suite 1700, Milwaukee, WI 53202. The attorneys of record may be contacted by phone at 414-298-1000.

E) Required Fee - Pursuant to 35 U.S.C. § 312(a)(1) and 37 C.F.R.
§ 42.103, the required petition fee has been paid from deposit account no. 18-0882.
If additional fees are due or if an overpayment has been made, the Commissioner is authorized to deduct or credit the proper amount to deposit account no. 18-0882.

F) **Grounds for Standing** - Pursuant to 37 C.F.R. § 42.104(a), Petitioner certifies that the '698 patent is eligible for *inter partes* review and that the

Petitioner is not barred or estopped from requesting *inter partes* review of the '698 patent.

G) Identification of Challenges -Pursuant to 35 U.S.C. § 312(a)(3) and 37 C.F.R. § 42.104(b)(1) and (2), the Petitioner requests review of claims 1-7, 11-12, 14-15 and 17 of the '698 patent. The grounds on which the challenges to each claim are based are identified below:

 Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are anticipated under 35 U.S.C. § 102(b) by PCT Publication WO 91/06678 to <u>Tsien</u> published May 16, 1991 entitled <u>DNA Sequencing ("Tsien</u>," Exhibit 1002).

 Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
 35 U.S.C. § 103(a) over <u>Tsien</u> in view of <u>A System for Rapid DNA Sequencing</u> with Fluorescent Chain-Terminating Dideoxynucleotides, by Prober, *Science* 238, 336-341 (1987) published in 1987 ("Prober I"; Exhibit 1003).

3. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are anticipated under 35 U.S.C. § 102(b) by U.S. Patent No. 5,547,839 issued August 20, 1996 to <u>Dower et al.</u> entitled <u>Sequencing of Surface Immobilized Polymers Utilizing</u> Microfluorescence Detection ("Dower," Exhibit 1005).

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
 35 U.S.C. § 103(a) over <u>Dower</u> in view of <u>Prober I</u>.

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
 35 U.S.C. § 103(a) over PCT Publication WO 96/27025 to <u>Rabani</u> published
 September 6, 1996 entitled <u>Device, Compounds, Algorithms, and Methods of</u>
 <u>Molecular Characterization and Manipulation with Molecular Parallelism</u>
 ("Rabani," Exhibit 1006) in view of Prober I.

 Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are anticipated under 35 U.S.C. § 102(a) by PCT Publication WO 00/53805 to <u>Stemple et al.</u> published September 14, 2000 entitled <u>A Method for Direct Nucleic Acid</u> <u>Sequencing ("Stemple II," Exhibit 1007).</u>

 Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under 35 U.S.C. § 103(a) over <u>Stemple II</u> in view of PCT Publication WO 98/33939 to <u>Anazawa et al.</u>, published August 6, 1998, entitled <u>Method for Determining</u> <u>Nucleic Acids Base Sequence and Apparatus Therefor</u> (Exhibit 1010). An English translation of WO 98/33939 ("<u>Anazawa</u>") is attached as Exhibit 1011, and an affidavit under 37 C.F.R. § 42.63(b) is attached as Exhibit 1012.

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
 35 U.S.C. § 103(a) over <u>Stemple II</u> in view of <u>Prober I</u>.

9. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are anticipated under 35 U.S.C. § 102(e) by U.S. Patent No. 7,270,951 issued September 18, 2007 to <u>Stemple et al.</u> entitled <u>Method for Direct Nucleic Acid Sequencing</u>, ("<u>Stemple</u> III," Exhibit 1008), which claims priority under 35 U.S.C. § 120 as a continuationin-part application of U.S. application serial no. 09/266,187 ("<u>Stemple I</u>," Exhibit 1009), filed **March 10, 1999**.

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
 35 U.S.C. § 103(a) over <u>Stemple III</u> in view of <u>Prober I</u>.

11. Claims 5 and 12 of the '698 patent are invalid as obvious under 35U.S.C § 103(a) over <u>Tsien</u> and <u>Prober</u> in further view of <u>Rabani</u>.

12. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under 35 U.S.C. § 103(a) over <u>Dower</u> in view of U.S. Patent No. 5,242,796 issued

September 7, 1993 to Prober entitled <u>Method, System and Reagents for DNA</u> <u>Sequencing</u> ("<u>Prober II</u>"; Exhibit 1004).

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
 U.S.C. § 103(a) over <u>Tsien</u> in view of <u>Prober II</u>.

14. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Rabani</u> in view of <u>Prober II</u>.

15. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Stemple II</u> in view of <u>Prober II</u>.

16. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Stemple III</u> in view of <u>Prober II</u>.

17. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Dower</u> in view of U.S. Patent No. 4,804,748 issued Feb.
14, 1989 to Seela entitled <u>7-Deaza-2'Deoxyguanosine Nucleotides</u> ("<u>Seela I</u>";
Exhibit 1014).

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
 U.S.C. § 103(a) over <u>Tsien</u> in view of <u>Seela I</u>.

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
 U.S.C. § 103(a) over <u>Rabani</u> in view of <u>Seela I</u>.

20. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Stemple II</u> in view of <u>Seela I</u>.

21. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Stemple III</u> in view of <u>Seela I</u>.

22. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Dower</u> in view of U.S. Patent No. 5,047,519 issued Sept.
10, 1991 to Hobbs, Jr. et al. entitled <u>Alkynylamino-Nucleotides</u> ("<u>Hobbs</u>"; Exhibit 1013).

23. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Tsien</u> in view of <u>Hobbs</u>

24. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Rabani</u> in view of <u>Hobbs</u>

25. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Stemple II</u> in view of <u>Hobbs</u>

26. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under35 U.S.C. § 103(a) over <u>Stemple III</u> in view of <u>Hobbs</u>

27. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Dower</u> in view of U.S. Patent No. 5,844,106 issued
December 1, 1998 to <u>Seela et al.</u> entitled <u>Modified Oligonucleotides, Their</u>

Preparation And Their Use ("Seela II," Exhibit 1015).

28. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Tsien</u> in view of <u>Seela II</u>.

29. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Rabani</u> in view of <u>Seela II</u>.

30. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under35 U.S.C. § 103(a) over <u>Stemple II</u> in view of <u>Seela II</u>.

31. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over <u>Stemple III</u> in view of <u>Seela II</u>.

32. Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under
35 U.S.C. § 103(a) over PCT Publication WO 93/21340 to <u>Rosenthal et al.</u>
published **October 28, 1993** entitled <u>DNA Sequencing Method ("Rosenthal,"</u>
Exhibit 1012) in view of <u>Tsien</u>.

Pursuant to 37 C.F.R. §§ 42.104(b)(4) and 42.104(b)(5), the details of how each challenged claim is unpatentable in view of each prior art reference, at least one instance of where each claim element can be found in the prior art and the supporting evidence relied upon are set forth in Section IV below.

H) **Claim Construction** - For purposes of this *inter partes* review Petition, the Patent Office will give the claim terms the "broadest reasonable" construction in light of the specification of the patent in which it appears" (e.g., the ordinary and customary meaning) as required by 37 C.F.R. § 42.100(b) which states "A claim in an unexpired patent shall be given its broadest reasonable construction in light of the specification of the patent in which it appears." 37 C.F.R. § 42.100. The interpretation and/or construction of the claims in the '698 patent relevant to this inter partes review should not be viewed as constituting, in whole or in part, Petitioner's own interpretation and/or construction of such claims for any other purpose, including litigation. Furthermore, Petitioner expressly reserves the right to present its own interpretation of such claims in any other proceeding, which interpretation may differ, in whole or in part, from that presented herein.

Copies of Submitted Prior Art - Pursuant to 35 U.S.C. § 312(a)(3), a copy of every patent and printed publication relied upon in this petition is submitted herewith.

III. OVERVIEW OF THE '698 PATENT AND SUMMARY OF INVALIDATING PRIOR ART REFERENCES

1. Summary of the '698 Patent and Invalidating Prior Art

The '698 patent issued on May 11, 2010 from U.S. Application No. 11/894,690 filed August 20, 2007. The '698 patent was filed as a continuation of application No. 10/702,203, filed on Nov. 4, 2003, now Pat. No. 7,345,159, which is a division of application No. 09/972,364, filed on Oct. 5, 2001, now Pat. No. 6,664,079, claiming the benefit of provisional application No. 60/300,894, filed June 26, 2001, and is a continuation-in-part of application No. 09/684,670, filed on Oct. 6, 2000, now abandoned.

The '698 patent is generally directed to a "sequencing by synthesis" method of determining the sequence of a polynucleic acid, such as DNA or RNA. <u>See</u> Abstract. In the sequencing by synthesis method of the '698 patent, 1) a nucleic acid template is attached to a solid support, 2) a primer hybridizes to the template, 3) a polymerase adds a 3'-OH blocked and labeled nucleotide (i.e., a nucleotide including a capping group at the 3' position on the ribose of the nucleotide and a label that identifies the nucleotide base) to form a primer extension strand, 4) the unique label on the nucleotide is detected to determine the type of nucleotide that was added by the polymerase, 5) removing the group capping the 3'-OH of the nucleotide that was incorporated into the primer extension strand, thereby permitting the addition of further nucleotides, and 6) repeating steps 3-5 to add and detect additional nucleotides added to the primer extension strand to determine the sequence of the nucleic acid template. <u>See</u> '698 patent, col. 8, ll. 8-52. <u>But see</u> also, <u>Dower, Tsien, Rabani</u>, and <u>Stemple III and III</u> as discussed below. The 3'-OH capping group acts to ensure that only one base is incorporated into the growing primer extension strand at a time, and removal of the 3'-OH capping group then allows the next the nucleotide to be added by the polymerase. <u>See</u> '698 patent, col. 21, ll. 25-39.

A "nucleotide analogue" is defined in the '698 specification as "...a chemical compound that is structurally and functionally similar to the nucleotide, i.e. the nucleotide analogue can be recognized by polymerase as a substrate." '698 patent, col. 7, ll. 48-51. Specific examples provided in the '698 patent of "nucleotide analogues" are nucleotides having 7-deaza-adenine and 7-deaza-guanine as the nucleobase. Id. col. 7, ll. 58-63. The cleavable chemical group that caps the -OH group at the 3'-position of the sugar of the nucleotide analogue can be any group that "1) is stable during the polymerase reaction, 2) does not interfere with the recognition of the nucleotide analogue by polymerase as a substrate, and 3) is cleavable." Id. at col. 9, 11. 52-58. Specific examples of cleavable groups are -CH₂OCH₃ and -CH₂CH=CH₂. *Id.* The labels that are attached to the nucleotide analogues are a fluorescent moiety, a fluorescent semiconductor crystal, a fluorescent energy transfer tag, or a mass tag. Id. at col. 9, 1. 59 to col. 10, 1. 35.

The linker attaching the label to the nucleotide analogue is a cleavable linker that can be cleaved by "...one or more of a physical means, a chemical means, a physical chemical means, heat, and light." *Id.* at col. 10, ll. 45-48. The cap group can be likewise cleaved by similar means. The label can be attached to the base of the nucleotide via a linker. As recited in the '698 patent specification, "...a label is attached through a cleavable linker to the 5-position of cytosine or thymine or to the 7-position of deaza-adenine or deaza-guanine." Id. at col. 7, ll. 63-66. <u>But see also Dower, Tsien, Rabani, and Stemple II and III</u>.

The '698 patent claims priority to Pat. No. 6,664,079. However, the '698 patent was not filed until well after Illumina announced and launched the first commercial sequencing by synthesis system. While both the '698 patent and its parent '079 patent are directed to sequencing by synthesis methods, the '698 patent removed many of the original limitations of the '079 patent that the patentee argued were important to their invention when prosecuting the '079 patent.

Independent claim 1 of the '698 patent, relates to a sequencing method, and independent claim 11 relates to a nucleotide analog usable in sequencing by synthesis methods. Challenged dependent claims 2-7, 12, 14-15, and 17 add additional limitations to claims 1 and 11. All challenged claims are reproduced in claim chart 1 below.

However, the prior art submitted with this Petition shows that all of the elements of the unjustifiably broadened claims of the '698 patent were both identically disclosed and well known in the prior art. For example, Dower, Tsien, Rabani and Stemple I, II and III all disclose both sequencing by synthesis methods and a plurality of immobilized nucleic acid templates identical to at least independent claim 1 and 11 of the '698 patent. For example, the prior art shows that it was known to use 3'-OH capped (e.g., chain terminating) and labeled nucleotide analogues mixed with primed, nucleic acid templates attached to a solid surface. Further, in the prior art sequencing processes, a single nucleotide analogue is added to the primer or primer extension strand complementary to the opposite nucleotide of the DNA template. The label (e.g., a fluorescent label attached to the base) is then detected to identify the type of nucleotide (e.g., A, G, C or T) that was added to the strand. Following removal of the 3'-OH capping group, the process is repeated to identify the sequence of the DNA template. Both independent claims 1 and 11 of the '698 patent recite that at least one of the nucleotide analogues is "deaza-substituted." However, as shown below, recitation of a "deaza-substituted " nucleotide analogue does not render the claims patentable.

In fact, the Background of the Invention section of the '698 patent itself confirms the teachings of the prior art submitted herewith. For example, the '698 patent Background section demonstrates that sequencing by synthesis was known at least by 1988 stating: "The concept of <u>sequencing DNA by synthesis</u> without using electrophoresis was first revealed in 1988 (Hyman, 1988)." <u>See</u> '698 patent, col. 2, ll. 7-9 (emphasis added). The '698 Applicant further admits that it was known to couple the DNA template to a chip and to use labeled nucleotides stating "Such a scheme coupled with the <u>chip format and laser-induced fluorescent</u> <u>detection</u> has the potential to markedly increase the throughput of DNA sequencing projects. Consequently, several groups have investigated such a system with an aim to construct an ultra high-throughput DNA sequencing procedure (Cheeseman 1994, Metzker et al. 1994)." <u>See</u> '698 patent, col. 2, ll. 11-17 (emphasis added).

Further, the '698 patent Background section demonstrates that it was known to attach label groups to the nucleotide base stating "it is known that modified DNA polymerases (Thermo Sequenase and Taq FS polymerase) are able to recognize nucleotides with extensive modifications *with bulky groups such as energy transfer dyes at the 5-position of the pyrimidines (T and C) and at the 7-position of purines (G and A)* (Rosenblum et al. 1997, Zhu et al. 1994)." See '698 patent, col. 2, ll. 43-49 (emphasis added). The '698 Applicant admits that it was known to use small chemical groups as 3'-OH blocking groups on nucleotides during sequencing reactions stating "It is known that MOM (--CH 2OCH₃) and allyl (--CH 2CH= CH 2) groups can be used to cap an --OH group, and can be cleaved chemically with high yield (Ireland et al. 1986; Kamal et al. 1999)." See '698

patent, col. 3, ll. 25-28 (emphasis added). In fact, the MOM and allyl groups identified as prior art in the background section of the '698 patent are the very 3'-OH capping groups that the '698 patent identifies as "embodiments of the invention." See '698 patent, col. 12, ll. 47-50, and FIG. 7.

Given the '698 applicant's understanding of the prior art as set forth in the Applicant's own Background section and the art of which they were aware, it is unclear how the broadened claims of the '698 patent could be patentable.

2. <u>Scope and Content of the Prior Art Relating to Nucleotides and</u> <u>dNTPs Having Deaza-Substituted Bases</u>

Both independent claims 1 and 11 of the '698 patent recite that at least one of the nucleotide analogues is "deaza-substituted." As background, a "deazasubstituted" nucleotide analogue is one that includes a deazabase. A "deazabase" is a nucleobase in which one of the natural nitrogen atoms in the base ring is substituted with a carbon atom. Specifically, in a "7-deazapurine," the natural 7position nitrogen atom is replaced with a carbon atom. For reference, the nucleobase adenine is shown below with standard position numbers shown in red:

However, recitation of a "deaza-substituted " nucleotide analogue does not render claims 1 or 11 patentable: use of nucleotide analogues including deazapurines was known in the nucleic acid sequencing field at least as early as the mid-1980s. See Weinstock Decl. ¶ 38. For example, it would have been obvious to substitute deaza bases for the regular bases of the SBS patents in view of the express motivation provided by U.S. Pat. No. 4,804,748 to Seela I. Seela I states that deazabases can advantageously be used in place of regular bases in polymerase-based sequencing methods. See, e.g., id. at col. 4, lines 4-6; see also col. 2, lines 6-11 and 23-29. While much of Seela I is directed to Sanger sequencing, Seela I states that this teaching about using deaza bases is not limited to Sanger sequencing. See, e.g., id. at col. 4, lines 4-10. Seela I states that deazabases can be used in place of regular bases in any DNA sequencing method that uses a DNA polymerase. Id. Additionally, Seela I observes that the deazabases can be used without changing the other conditions of the sequencing reaction. See Seela I, col. 4, lines 11-13. See also Seela II, Hobbs, Prober I, and Prober II. Further, it was widely known to use deazapurine-based nucleotides in the sequencing by synthesis methods at least 10 years prior to the '698 patent's earliest claimed filing date. See Dower, Tsien, and Stemple II and the citations therein, including Prober I and Anazawa.

In addition to the express statement in <u>Seela I</u>, multiple prior art references recognized a number of advantages for using deazapurines as the base in nucleotide analogs for sequencing. For example, the prior art teaches that deazaguanine-based nucleotides allow for effective sequencing of cytosine-guanine rich areas. <u>See e.g., Seela I</u>, col. 4, lines 31-33. Similarly, <u>Prober I</u> demonstrated that labels attached to the 7-position of deaza purines could be successfully incorporated by polymerase. <u>Prober I</u>, page 340, col. 1.

Also, Hobbs reflects the synthesis scheme used to make the nucleotides of Prober I. Hobbs teaches that the 7 position of a purine base is a particularly advantageous location to place a label, as that location least interferes with the incorporation of the nucleotide into a DNA strand by a polymerase. Hobbs, col. 8, lines 54-60. Hobbs also teaches that when a label is placed at the advantageous 7 position of a purine base, the 7 position needs to be converted from an N to a C (i.e. needs to be "deaza") in order to form a stable glycosidic linkage between the base and ribose portions of the nucleotide. See, e.g., Hobbs, col. 10, lines 67 - col. 11, line 4. Hobbs teaches that the base can be a deoxy or a dideoxy nucleotide, and can have a blocked 3' position. See, e.g., Hobbs, col. 7, line 24 to col. 8, line 12 (particularly col. 8, line 8), col. 9, line 24 to col. 10, line 58. Hobbs also teaches that a linker may be used to connect the label to the 7 position of the deaza-purine and that the linker can include cleavable groups. Id., col. 7, lines 29-35; col. 11,

lines 59-66; and col. 43, lines 34-62. <u>Hobbs</u> also teaches that four different labels can be used to uniquely identify the each of the four bases. <u>See id.</u>, col. 5, ll. 1-4, col. 8, ll. 11-12, and 16-27, col. 12, ll. 3-58.

In light of this express motivation in <u>Hobbs</u>, a person of ordinary skill in the art would have been motivated to make the nitrogen to carbon substitution (<u>i.e.</u> make the base a "deaza" base) when attaching a label to the 7 position of a purine base of a nucleotide, as disclosed in the prior art discussed in the '698 patent Background section. <u>See</u> '698 patent, col. 2, lines 45-51. In fact, the work described in <u>Hobbs</u> was recognized as instructive for attaching labels by those in the field of next generation sequencing. <u>See, e.g., J. Williams</u> at col. 9, line 9, <u>et seq.</u>, referenced below.

Other references similarly demonstrate that the use of 7-deaza-substituted nucleotide analogs was known in the field of DNA sequencing. <u>Prober II</u> states that the 7-deaza modification is necessary for the stability of the nucleotide. <u>See, e.g.</u>, col. 18, line 58 to col. 19, line 12. <u>Prober II</u> likewise teaches that the linker attaching the label can include cleavable groups. <u>See Prober II</u>, col. 19, lines 18-42. <u>Prober II</u> also teaches that the 7-position is an ideal location to attach a fluorescent label. <u>Id.</u>

Third, nucleotides having deaza bases were also known to include benefits applicable to sequencing DNA using a DNA polymerase extension, as in the

sequencing by synthesis references, discussed below. For example, deaza bases were known to simplify polymerase extension with a DNA polymerase when the target DNA was susceptible to forming secondary structure. <u>See, e.g.</u>, WO 89/11548 to Saiki ("<u>Saiki</u>," Exhibit 1016) at p. 5, lines 1-5.

Fourth, the obvious interchangeability of regular and deaza bases is reflected in the art. For example, <u>Dower</u> teaches that sequencing by synthesis methods employing modified nucleotides having a 3'-OH "blocking agent" are "analogous to the dideoxy nucleotides used in the Sanger and Coulson sequencing procedure, but in certain embodiments here, the blockage is reversible." <u>Dower</u>, col. 14, II. 53-56. Thus, <u>Dower</u> expressly teaches that art related to dideoxy nucleotides (<u>i.e.</u>, <u>Prober I, Prober II, Hobbs</u>) is pertinent to the disclosed methods using nucleotides that are "blocked at the position of '3 elongation." <u>Id.</u>, col. 15, lines 33-35. Similarly, <u>Tsien</u> teaches that the synthesis scheme for <u>dd</u>NTPs used in <u>Prober I</u> should be used in <u>Tsien</u> to produce "fluorescent <u>d</u>NTPs." <u>Tsien</u>, p. 29, II. 10-19.

The known interchangeability by the earliest claimed priority date of the '698 patent is also reflected in a number of the other prior art, next-generation sequencing patents filed around the same time as the '698 patent's earliest claimed priority date. <u>See, e.g., Anazawa</u>; U.S. Pat. No. 7,037,687 to <u>P. Williams</u> (col. 4, lines 1-11, Exhibit 1017); U.S. Pat. No. 6,255,083 to <u>J. Williams</u> (col. 5, lines 46-53, Exhibit 1018); and U.S. Pat. No. 6,001,566 to Canard (<u>see</u> col. 3, lines 19-41,

Exhibit 1019). Each of these references are directed to next generation sequencing methods based on polymerase extension, and each refers to the use of labeled deazapurine bases as a known alternative to using regular purine bases.

3. Summary of the Prosecution History of the '698 Patent

The '698 patent application was originally filed with 60 claims on August 20, 2007, however, in a preliminary amendment filed January 10, 2008 (Exhibit 1022), those claims were canceled and new claims 61-82 were introduced. After amending the claims, independent claims 61 and 77 eventually lead to issued claims 1 and 11, respectively.

Twice during the prosecution of the '698 patent, the applicant amended the claims to recite deaza-substituted nucleotides. In the first response mailed October 16, 2008 (Exhibit 1022), the applicant added the deaza limitations to overcome anticipation rejections based on U.S. Patent Nos. 5,302,509 ("Cheeseman") and 6,087,095 ("Rosenthal"). In a supplemental response mailed January 16, 2009 (Exhibit 1022), the deaza limitations were removed. However, after removing the deaza limitations in the intervening response, in a later response mailed November 5, 2009 (Exhibit 1022), the applicant added the deaza limitations back to the claims to overcome an anticipation rejection based on <u>Dower</u>. Following this amendment, the Examiner sent a Notice of Allowance on December 14, 2009 (Exhibit 1022) allowing claims 1-17 as issued in the '698 patent.

However, as shown by the references accompanying this petition and the Declaration of George Weinstock, Ph.D. (Exhibit 1021), it was widely known in the prior art to use deaza-substituted nucleotide analogues in nucleic acid sequencing methods and systems, including sequencing by synthesis methods and systems. Further, as shown below, <u>Dower</u> incorporates <u>Prober I</u> by reference, and <u>Prober I</u> teaches the "deaza substituted" nucleotide analogues argued as rendering the claims patentable by the applicant of the '698 patent.

IV. DETAILED EXPLANATION OF PETITIONER'S BASIS FOR CHALLENGING CLAIMS 1-7, 11-12, 14-15 and 17 OF THE '698 PATENT DEMONSTRATING A REASONABLE LIKELIHOOD OF PREVAILING AGAINST THE CLAIMS OF THE '698 PATENT

Pursuant to 35 U.S.C. § 312(a)(3) and 37 C.F.R. § 42.104(b), this Petition presents a detailed explanation of the basis of each challenge to claims 1-7, 11-12, 14-15 and 17 of the '698 patent and where each element of each claim can be found in each prior art reference.

1. <u>Ground for Challenge 1 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as anticipated by Tsien

<u>Tsien</u> published **May 16, 1991**. <u>Tsien</u> qualifies as prior art against the '698 patent under 35 U.S.C. § 102(b) because it was published more than one year before the earliest claimed filing date of the '698 patent, October 6, 2000 ("the '698 patent's earliest claimed filing date"). <u>Tsien</u> was submitted to the Patent Office during prosecution of the '698 patent, on page 3 of a 15 page information

disclosure statement listing 193 separate references. There is no indication that <u>*Tsien*</u> was considered in detail by the Examiner.

<u>Tsien</u> generally discloses a sequencing by synthesis method in which a template DNA strand is coupled to a solid support, and 3'-OH blocked and fluorescent labeled nucleotides are sequentially added to a primer during sequencing. <u>Tsien</u> first steps through the sequencing method generally, and then discusses the details of each element in the subsections that follow the general discussion. <u>See p. 9</u>, lines 10-27. The relevant general sequencing method of <u>Tsien</u> is disclosed at p. 11, line 28 to p. 15, line 5. The detailed discussions of each element of the method are disclosed starting at page 19. Annotated versions of FIG. 1B and FIG. 2 of <u>Tsien</u> are shown below:

Of particular relevance, Tsien discloses 3'-OH capping groups for nucleotides and methods for their removal at pages 23-25, and nucleotide labeling

groups and methods for attachment and removal at pages 28-29. Additionally,

Tsien expressly cites to Prober I for at least its disclosure of use of a deaza-

substituted purine in fluorescence-labeled nucleotides.

The analysis and claim charts below demonstrate that claims 1-7, 11-12,

14-15 and 17 of the '698 patent are invalid as anticipated by <u>Tsien:</u>

Claim in 7,713,698	Disclosure and Explanation of <u>Tsien</u>
1. A method of	"The present invention relates to an instrument and a
determining the	method to <i>determine the nucleotide sequence</i> in a DNA
identity of a nucleotide	molecule without the use of a gel electrophoresis step."
analogue incorporated	Tsien, Abstract (emphasis added).
into a nucleic acid	
primer extension	"The method employs an unknown <i>primed</i> single
strand, comprising:	stranded DNA sequence." <u>Tsien</u> , Abstract (emphasis added).
a) contacting a nucleic	"The method employs an unknown primed single
acid template attached	stranded DNA sequence which is <i>immobilized</i> or
to a solid surface	entrapped within a chamber." <u>Tsien</u> , Abstract (emphasis
	added).
	As shown in FIG. 1B, "template 6* carries the reactive group X which bonds to the <i>substrate</i> via the A-X bond to form an <i>immobilized template</i> 5*" and the substrate identified by reference numeral 1 is identified as a " <i>solid support</i> 1." Tsien, page 11, ll. 15-17, page 10, line 27 and FIG. 1B (emphasis added).
with a nucleic acid	"The method employs an unknown <i>primed</i> single
primer which	stranded DNA sequence." <u>Tsien</u> , Abstract (emphasis
hybridizes to the	added).
template;	
	"A primer, which is complementary to the known
	sequence of the vector is used to start the growth of the
	unknown complementary chain." <u>Tsien</u> , page 10, II. 23-
	2.5 and FIU. 1D.

<u>Claim Chart 1 - Anticipation of Challenged Claims by Tsien</u>

b) simultaneously contacting the product of step a) with a polymerase and four nucleotide analogues which are either (i) aA, aC, aG, and aT, or (ii)	The immobilized template 5* shown in FIG. 1B " <i>is then</i> <i>hybridized with primer 3</i> * to give the immobilized, primed template 9* upon which the desired adding of dNTPs takes place to add units 11 and 12 and thus identify the sequence and identity of units 11' and 12'." <u>Tsien</u> , page 11, ll. 17-21 and FIG. 1B (emphasis added). As shown in FIG. 2, "In practice, the <i>polymerase and</i> the <i>four labeled dNTPs</i> are added to the reaction zone 14 under conditions adequate to permit the enzyme to bring about <i>addition of the one, and only the one</i> , of the four labeled blocked dNTPs which is complementary to the first available template nucleotide following the primer." Tsien, page 12, ll. 22-27 and FIG. 2 (emphasis added).
aA, aC, aG, and aU,	<u></u>
so as to incorporate one	<u>Tsien</u> discloses use of modified nucleotides having as their nucleoside bases "adenosine, cytidine, guanosine and thymidine." <u>Tsien</u> , p. 9, 11. 30-36 The immobilized template 5* shown in FIG. 1B "is then
of the nucleotide analogues onto the nucleic acid primer and form a nucleic acid primer extension strand	hybridized with primer 3* to give the immobilized, primed template 9* upon <u>which the desired adding of</u> <u>dNTPs takes place to add units 11 and 12</u> and thus identify the sequence and identity of units 11' and 12'." <u>Tsien</u> , page 11, ll. 17-21 and FIG. 1B (emphasis added).
Struite,	As shown in FIG. 2 "In practice, the polymerase and the <u>four labeled dNTPs</u> are added to the reaction zone 14 under conditions adequate to permit the enzyme to bring about <u>addition of the one, and only the one</u> , of the four labeled <u>blocked dNTPs</u> which is complementary to the first available template nucleotide following the primer." <u>Tsien</u> , page 12, ll. 22-27 and FIG. 2 (emphasis added).
wherein each nucleotide analogue within (i) or (ii) comprises a base labeled with a unique label and	FIG. 2 shows the dNTPs as "3'-Blocked d A'TP," "3'- Blocked d C"TP," "3'-Blocked d G""TP," "3'-Blocked d T""TP," and according to <u>Tsien</u> "When they are each tagged or <u>labeled with different reporter groups</u> , such as different fluorescent groups, they are represented as dA'TP, dC"TP, dG""TP and dT""TP." <u>Tsien</u> , page 10, ll. 7-10 and FIG. 2 (emphasis added).

	"One method involves the use of a fluorescent tag attached to <u>the base moiety</u> ." <u>Tsien</u> , page, 28, ll. 5-6 (emphasis added).
contains a removable chemical moiety capping the 3'-OH	FIG. 2 shows the dNTPs as 3'-Blocked dA'TP, 3'- Blocked dC"TP, 3'-Blocked dG"TP, 3'-Blocked d T""TP. <u>Tsien</u> , FIG. 2.
the nucleotide analogue, and	"A deblocking solution is added via line 28 to <u>remove</u> the 3' hydroxyl labeled blocking group." <u>Tsien</u> , page 13, ll. 17-19 (emphasis added).
	"The coupling reaction generally employs <u>3' hydroxyl-</u> <u>blocked</u> dNTPs to prevent inadvertent extra additions." <u>Tsien</u> , page 20, ll. 25-26 (emphasis added).
	"The most common 3'-hydroxyl blocking groups are esters and ethers. Other blocking modifications to the 3'-OH position of dNTPs include the introduction of groups such as -F, -NH ₂ , -OCH ₃ , -N ₃ , -OPO ₃ ⁼ , -NHCOCH ₃ , 2-nitrobenzene carbonate, 2,4-dinitrobenzene sulfenyl and tetrahydrofuranyl ether."
	<u>Tsien</u> , page 21, ll. 12-17.
wherein at least one of the four nucleotide analogues within (i) or (ii) is deaza- substituted; and	In discussing methods utilizing a dNTP in which the fluorescent label group is coupled to the base of the dNTP, <u>Tsien</u> incorporates the disclosure of <u>Prober I</u> , stating "[o]ne method involves the use of a fluorescent tag attached to the base moiety This method is included because a number of base moiety derivatized dNTP analogues have been reported to exhibit enzymatic competence Prober et al. (1987) show enzymatic incorporation of fluorescent ddNTPs by reverse transcriptase and Sequenase TM ." <u>Tsien</u> , page 28, lines 5-18.
	<u>Science</u> 238: 336-341, a copy of which accompanies this Petition. <u>See Tsien</u> , page 5, ll. 22-23.
	<u>Prober et al.</u> discloses "the set of four fluorescence- tagged chain-terminating reagents we have designed and
4. The method of	"One enzyme which can be used is sequenase [™] enzyme
-------------------------	--
claim 1, wherein the	(an enzyme derived from <i>bacteriophage T7 DNA</i>
polymerase is Taq	<i>polymerase</i> that is modified to improve its sequencing
DNA polymerase, T7	properties Other polymerases which can be used
DNA polymerase or	instead of sequenase [™] include but are not limited to
Vent DNA polymerase.	Klenow fragment of DNA polymerase I, AMV reverse
	transcriptase, and <i>Taq polymerase</i> ." Tsien, page 19, ll.
	7-18 (emphasis added).
5. The method of	As shown in FIG. 2 reproduced above, "A <i>plurality</i> of
claim 1, wherein in	copies of a subject <i>primed single stranded DNA</i> are
step a) a plurality of	immobilized on this surface 15." Tsien, page 11, 11. 34-
different nucleic acid	36 (emphasis added).
templates are attached	
to the solid surface.	
6. The method of	"DNA and RNA are commonly attached noncovalently
claim 1, wherein said	through ionic interactions along their length to various
nucleic acid template	types of membranes." <u>Tsien</u> , page 32, ll. 15-17
comprises an RNA	(emphasis added).
template.	
7. The method of	"Other polymerases which can be used instead of
claim 6, wherein the	sequenase TM include but are not limited to $\dots \underline{AMV}$
polymerase is a reverse	reverse transcriptase." Tsien, page 19, ll. 15-18
transcriptase.	(emphasis added).
11. A plurality of	"The method employs an unknown primed single
nucleic acid templates	stranded DNA sequence which is <i>immobilized</i> or
immobilized on a solid	entrapped within a chamber." Tsien, Abstract (emphasis
surface,	added).
	As shown in FIG. 2 reproduced above, "A <i>plurality of</i>
	copies of a subject primed single stranded DNA are
	immobilized on this surface 15." Tsien, page 11, ll. 34-
	36 (emphasis added).
wherein a nucleic acid	"The method employs an unknown <i>primed</i> single
primer is hybridized to	stranded DNA sequence." <u>Tsien</u> , Abstract (emphasis
such nucleic acid	added).
templates each such	
nucleic acid primer	"A primer, which is complementary to the known
comprising a labeled	sequence of the vector is used to start the growth of the
incorporated nucleotide	unknown complementary chain." Tsien, page 10, ll. 23-
analogue,	25 and FIG. 1B.
······	· · · · · · · · · · · · · · · · · · ·

	The immobilized template 5* shown in FIG. 1B " <i>is then</i> <u>hybridized with primer 3*</u> to give the immobilized, primed template 9* upon which the desired adding of dNTPs takes place to add units 11 and 12 and thus identify the sequence and identity of units 11' and 12'." <u>Tsien</u> , page 11, ll. 17-21 and FIG. 1B (emphasis added).
at least one of which is deaza-substituted,	In discussing methods utilizing a dNTP in which the fluorescent label group is coupled to the base of the dNTP, <u>Tsien</u> incorporates the disclosure of <u>Prober I</u> , stating "[o]ne method involves the use of a fluorescent tag attached to the base moiety This method is included because a number of base moiety derivatized dNTP analogues have been reported to exhibit enzymatic competence Prober et al. (1987) show enzymatic incorporation of fluorescent ddNTPs by reverse transcriptase and Sequenase TM ." <u>Tsien</u> , page 28, lines 5-18.
	The Prober et al. referenced by <u>Tsien</u> is <u>Prober I (1987)</u> <u>Science</u> 238: 336-341, a copy of which accompanies this Petition. <u>See Tsien</u> , page 5, ll. 22-23.
	<u>Prober et al.</u> discloses "the set of four fluorescence- tagged chain-terminating reagents we have designed and synthesized is shown in FIG. 2. These are ddNTP's to which succinylfluorescein has been attached via a linker to the heterocyclic base the linker is attached to the 7 position in the <u>7-deazapurines</u> ." <u>Prober et al.</u> , page 337, 1st column (emphasis added).
wherein each labeled nucleotide analogue comprises a base labeled with a unique label and	FIG. 2 shows the dNTPs as "3'-Blocked d A'TP," "3'- Blocked d C"TP," "3'-Blocked d G""TP," "3'-Blocked d T""TP," and according to <u>Tsien</u> "When they are each tagged or <i>labeled with different reporter groups</i> , such as different fluorescent groups, they are represented as dA'TP, dC"TP, dG""TP and dT""TP." <u>Tsien</u> , page 10, 11. 7-10 and FIG. 2 (emphasis added).
	"One method involves the use of a fluorescent tag attached to <i>the base moiety</i> ." <u>Tsien</u> , page, 28, ll. 5-6

	(amphagic addad)
contains a removable chemical moiety capping the 3'-OH group of the sugar of	(emphasis added). FIG. 2 shows the dNTPs as 3'-Blocked dA'TP, 3'- Blocked dC"TP, 3'-Blocked dG"'TP, 3'-Blocked d T""TP. <u>Tsien</u> , FIG. 2.
the nucleotide analogue.	"A deblocking solution is added via line 28 to <u>remove</u> the 3' hydroxyl labeled blocking group." <u>Tsien</u> , page 13, ll. 17-19 (emphasis added).
	"The coupling reaction generally employs <u>3' hydroxyl-</u> <u>blocked</u> dNTPs to prevent inadvertent extra additions." <u>Tsien</u> , page 20, ll. 25-26 (emphasis added).
	"The most common 3'-hydroxyl blocking groups are esters and ethers. Other blocking modifications to the 3'-OH position of dNTPs include the introduction of
	groups such as -F, -NH ₂ , -OCH ₃ , N ₃ , -OPO ₃ ^{$=$} ,
	-NHCOCH ₃ , 2-nitrobenzene carbonate,
	2,4-dinitrobenzene sulfenyl and tetrahydrofuranyl ether." <u>Tsien</u> , page 21, ll. 12-17.
12. The plurality of	"Figure 3 shows a schematic representation of a device
nucleic acids of claim	30 which has the four reaction zone configuration
11, wherein said	each of the four reaction zones contains a surface 34a-d
plurality are present in	to which is immobilized numerous copies of a primed
a microarray.	subject single stranded DNA" <u>Tsien</u> , p. 15, ll. 6-16.
	Multiple "reaction zones" constitute an array.
14. The method of	The immobilized template 5* shown in FIG. 1B "is then
claim 2, wherein the	hybridized with primer 3* to give the immobilized,
primer extension strand	primed template 9* upon <u>which the desired adding of</u>
that results from step b)	<u><i>dNTPs takes place to add units 11 and 12</i> and thus </u>
is the nucleic acid	Identify the sequence and identity of units 11 and 12."
primer onto which the	<u>1 sien</u> , page 11, 11. 1/-21 and FIG. 1B (emphasis added).
iurther nucleotide	
analogue is to be	
Incorporated.	"In such as the of new states labeling the diverse such
15. The method of	In another type of remote labeling the <u>fluorescent</u>
of soid unique labels is	<u><i>molely</i></u> of other innocuous label <u>can be attached to the</u>
of salu unique labers is	and realized to release the fluorophore or other
nucleotide analogue vio	label on demand. There are several closurable tethors that
nucleonue analogue via	autor on demand. There are several cleavable temers that

a cleavable linker.	permit removing the fluorescent group before the next
	successive nucleotide is addedfor example, silyl ethers
	are suitable tethers which are cleavable by base or
	fluoride, allyl ethers are cleavable by Hg(II), or 2,4-
	dinitrophenylsulfenyls are cleavable by thiols or
	thiosulfate." <u>Tsien</u> , page 28, ll. 19-29 (emphasis added).
17. The method of	Tsien discloses non-fluorescent 3'-OH capping groups
claim 1, wherein the	stating "The most common 3'-hydroxyl blocking groups
chemical moiety	are esters and ethers. Other blocking modifications to the
capping the 3'-OH	3'-OH position of dNTPs include the introduction of
group is not a	groups such as -F, $-NH_2$, $-OCH_3$, $-N_3$, $-OPO_3^{=}$,
fluorescent dye.	-NHCOCH ₃ , 2-nitrobenzene carbonate,
	2,4-dinitrobenzene sulfenyl and tetrahydrofuranyl ether."
	<u>Tsien</u> , page 21, ll. 12-17.

Regarding the limitation in claims 1 and 11 that at least one of the nucleotide analogs be deaza-substituted, <u>Tsien</u> discloses that "[o]ne method involves the use of a fluorescent tag attached to the base moiety." Tsien, page, 28, ll. 5-6 (emphasis added). As a specific example, Tsien incorporates the disclosure of Prober I, Science 238, 336-341 (1987) for its teaching of preparing ddNTPs with fluorescent tags that can be successfully incorporated by Tsien's preferred polymerase, Sequenase[™]. See Tsien et al., page 5, lines 22-23, page 19, lines 4-18; and page 28, lines 5-18; see Weinstock Decl. ¶¶ 63-64. In addition to specifically incorporating the teaching of Prober I in the section regarding attaching the fluorescent label, Tsien et al. generally provides express instruction that the documents identified in the specification are to be used "for their teaching of synthetic methods, coupling and detection methodologies, and the like." See Tsien, page 3, lines 13-16.

Prober I expressly discloses attaching a fluorescent label to the 7 position of a 7 deazapurine. Since the attachment to purine bases (A and G) in Prober I is required to be to a carbon rather than a nitrogen at the 7 position of the base, following the teaching of Prober I requires the use of a 7-deaza purine base (i.e. a base with a carbon rather than a nitrogen at the 7 position). Thus, Tsien et al. specifically references Prober I's teaching of using a 7-deazapurine as an effective way to couple a fluorescent label to a nucleic acid base for use in a sequencing method. As such, Tsien incorporates the teachings of Prober I, and the disclosure of Prober I incorporated by Tsien is sufficient to meet the all elements rule of anticipation under 35 U.S.C. § 102(b). See Liebel-Flarsheim Co. v. Medrad, Inc., 481 F.3d 1371, 1383 (Fed. Cir. 2007) (stating "material not explicitly contained in the single, prior art document may still be considered for purposes of anticipation if that material is incorporated by reference into the document" and "material incorporated by reference is effectively part of the host document as if it were explicitly contained therein." (internal quotations and citations omitted)).

2. <u>Ground for Challenge 2 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Tsien and Prober I

<u>Prober I</u> was published in 1987. <u>Prober I</u> is prior art against the '698 patent under 35 U.S.C. § 102(b) because it was published more than one year before the earliest claimed filing date of the '869 patent.

Petitioner has demonstrated that Tsien, through incorporation of Prober I,

anticipates claims 1-7, 11-12, 14-15 and 17 of the '698 patent. In the alternative, claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Tsien</u> combined with <u>Prober I</u> under 35 U.S.C. § 103. <u>Tsien</u> states that <u>Prober I</u> is used "for [its] teaching of synthetic methods, coupling and detection methodologies, and the like." <u>Tsien</u>, p. 3, ll. 11-16. With specific reference to Prober I, at page 28, lines 5-18. Tsien states that:

One method involves the use of a fluorescent tag attached to the base moiety.... This method is included because a number of base moiety derivatized dNTP analogues have been reported to exhibit enzymatic competence. Prober et al. (1987) [Prober I] show enzymatic incorporation of fluorescent ddNTPs by ... Sequenase[™]

<u>Tsien</u> thus provides an express teaching, suggestion, and motivation to combine <u>Tsien</u> with the disclosures of <u>Prober I</u> with respect to "base moiety derivatized" nucleotide analogues. <u>See Tsien</u> at page 3, ll. 14-16 and page 28, ll. 16-18, respectively; <u>see</u> Weinstock Decl. ¶¶ 65-67. <u>Tsien</u> further states that the synthesis scheme for ddNTPs used in <u>Prober I</u> should be used in <u>Tsien</u> to produce "fluorescent dNTPs." <u>Tsien</u>, p. 29, ll. 10-19.

As disclosed above in **Claim Chart 1**, <u>Tsien</u> discloses each element of claims 1-7, 11-12, 14-15 and 17 of the '698 patent. Should it be determined, however, that Tsien does not disclose use of deaza-substituted nucleotide analogs in its method of sequencing by synthesis, <u>Prober I</u> discloses that "ddNTP's to which

succinylfluorescein has been attached via a linker to the heterocyclic base ... the linker is attached ... to the <u>7 position in the 7-deazapurines</u>." <u>Prober I</u>, page 337, 1st column (emphasis added). Thus, <u>Prober I</u> discloses the element of both claims 1 and 11 relating to use of nucleotide analogs having deaza-substituted bases.

In addition, one skilled in the art would be motivated to combine the teachings of Prober I with Tsien because the nucleotide analogues disclosed in Prober I, wherein "a linker is attached to the 5 position in the pyrimidines and to the 7 position in the 7-deazapurines," is shown to be an effective way to attach a fluorescent label to a nucleic acid base while maintaining the ability of the SequenaseTM polymerase used by Tsien to incorporate the associated dNTP into the primer extension strand. See Tsien, page 28, lines 5-18. Combining references teaching sequencing by synthesis methods with references teaching the use of deaza-substituted nucleotide analogues was well known in the art and provided well known advantages. See Section III.2. Further, it would have been obvious to combine Tsien and Prober I because the combination of known features with known systems and methods merely produces a predictable result. See Weinstock Decl. ¶ 66-67. As such, Tsien combined with Prober et al. renders claims 1-7, 11-12, 14-15 and 17 obvious under 35 U.S.C. § 103.

Further, as shown above, <u>Tsien</u> identically discloses the limitations added by dependent claims 5 and 12. However, in the alternative, claims 5 and 12 are

33

obvious in view of <u>Tsien</u> in view of <u>Prober I</u> as evidenced by the '698 patent's admitted prior art. Claim 5 recites "wherein in step a) a plurality of different nucleic acid templates are attached to the solid surface, "and claim 12 recites "wherein said plurality are present in a microarray." The background section of the '698 patent admits that "ultra high-throughput" sequencing procedures and the use of "chip format" sequencing are well known in the art. <u>See</u> '698 Background Section, col. 2, ll. 11-16. Thus, dependent claims 5 and 12 are obvious in view of <u>Tsien, Prober I</u> and the '698 patent's admitted prior art.

3. <u>Ground for Challenge 3 - Claims 1-7, 11-12, 14-15 and 17 of the</u> <u>'698 patent are invalid as anticipated by Dower</u>

<u>Dower</u> issued **August 20, 1996**. <u>Dower</u> qualifies as prior art against the '698 patent under 35 U.S.C. § 102(b) because it was patented more than one year before earliest claimed filing date of the '698 patent.

<u>Dower</u> generally discloses nucleic acid sequencing by synthesis methods, and discloses both a degradative approach and a synthetic approach to sequencing. The synthetic approach is relevant to the '698 patent. <u>See, generally, Dower</u> col. 14 - col. 15 and col. 23 - col. 26. This approach uses chain-terminating nucleotide analogs having both a removable fluorescent label attached to the base of the nucleotide and a removable blocking group located at the 3'-OH of the ribose. As set forth above in Section III.3, Dower was considered by the Examiner in an office action dated June 5, 2009, and the claims of the '698 patent were amended to add limitations reciting the use of deaza-substituted nucleotide analogues to overcome rejections based on <u>Dower</u>. However, the Examiner failed to appreciate that <u>Dower</u> does, in fact, disclose the use of deaza-substituted bases in nucleotide analogs. <u>Dower</u> expressly incorporates <u>Prober I</u> by reference for at least its disclosure of deazapurine based, fluorescence-labeled nucleotides. Although <u>Dower</u> was considered by the Examiner, there is no indication that the Examiner recognized that <u>Dower</u> incorporated <u>Prober I</u> by reference.

For example, an annotated version of FIG. 8 of Dower is shown below (the two portions reproduced side by side for clarity):

FIG. 9 of <u>Dower</u> shows a synthesis scheme towards production of a labeled and 3'-OH blocked nucleotide which includes a fluorescent label connected to the base. An annotated version of a portion of FIG. 9 of <u>Dower</u> is reproduced below:

The analysis and claim charts below demonstrate that claims 1-7, 11-12, 14-

15 and 17 of the '698 patent are invalid as anticipated by <u>Dower:</u>

Claim in 7,713,698	Disclosure and Explanation of <u>Dower</u>
1. A method of	"The invention also embraces methods for <i>sequencing</i> a
determining the	plurality of distinctly positioned polynucleotides
identity of a nucleotide	attached to a solid substrate comprising the steps of:
analogue incorporated	hybridizing complementary primers to said plurality
into a nucleic acid	of polynucleotides;
primer extension	elongating a complementary primer hybridized to a
strand, comprising:	polynucleotide by adding a single nucleotide; and
	identifying which of said complementary primers have
	incorporated said nucleotide."
	Dower, col. 4, 11. 44-53 (emphasis added).
	"The synthetic mode, as illustrated in FIG. 1 is easily
	applied to the sequencing of nucleic acids The
	synthetic scheme depends, in part, on the stepwise
	elongation by small and identifiable units. A polymerase
	is used to extend <u>a primer complementary to a target</u>
	template. The primer is elongated one nucleotide at a
	time by use of a particular modified nucleotide analog to
	which a blocking agent is added and which prevents
	further elongation." <u>Dower</u> , col. 14, ll. 38- 53 (emphasis
	added); see FIG. 8.
a) contacting a nucleic	"The invention also embraces methods for sequencing a
acid template attached	plurality of distinctly positioned <i>polynucleotides</i>
to a solid surface	attached to a solid substrate." Dower, col. 4, ll. 44-46
	(emphasis added); see also FIG. 8 (showing "ATTACH"

Claim Chart 2 - Anticipation of Challenged Claims by Dower

	step at beginning of sequencing method).
	In a section entitled "Attachment to a surface," <u>Dower</u> states "Both degradative and synthetic sequencing methods begin by obtaining and <i>immobilizing</i> the target fragments of unknown sequence to be determined at specific locations on <i>the surface</i> ." <u>Dower</u> , col. 23, ll. 34- 37 (emphasis added).
with a nucleic acid	" <u>hybridizing</u> complementary <u>primers</u> to said plurality of
primer which hybridizes to the	polynucleotides." <u>Dower</u> , col. 4, II. 47-48 (emphasis
template:	added):
••••••••••••••••	The synthetic method "involves <i>annealing a primer</i>
	near to the 3' end of the unknown target sequences."
1 \ 1 1	Dower, col. 23, ll. 16-18 (emphasis added).
b) simultaneously	"A <u>polymerase</u> is used to <u>extend a primer complementary</u>
of step a) with a	nucleotide at a time " Dower, col. 14, 11, 48-50
polymerase and four	(emphasis added).
nucleotide analogues	
which are either (i) aA, aC, aG, and aT, or (ii) aA, aC, aG, and aU,	 FIG. 8 of <u>Dower</u> (reproduced above) shows A, C, G, T nucleotides as "labeled and blocked monomers 86" (the "B" stands for blocked and the "*" represents the label in FIG. 8) that are added to the primed template polynucleotide strand." <u>Dower</u>, col. 15, line 1, and FIG. 8.
	"DNA polymerase, or a similar polymerase, is used to extend the chains by one base by <u>incubation in the</u> <u>presence of dNTP analogs</u> which function as both chain terminators and fluorescent labels. This is done in a <u>one- step process</u> where <u>each of the four dNTP analogs</u> is identified by a distinct dye." <u>Dower</u> , col. 23, ll. 18-22 (emphasis added).
	See FIG 9 of <u>Dower</u> for nucleotide analogs.
so as to incorporate one	"The primer is elongated one nucleotide at a time."
of the nucleotide	<u>Dower</u> , col. 14, line 50-51, and FIG. 8.
analogues onto the	As shown in the events of FIC 9 "- 1-1-1-1-1-1-1
nucleic acid primer and	As snown in the example of FIG. 8, "a labeled blocked

Reinhart\8995605

form a nucleic acid primer extension strand,	guanosine monomer has been incorporated into the elongated primer 90." <u>Dower</u> , col. 15, line 8-10, and FIG. 8.
wherein each nucleotide analogue within (i) or (ii) comprises a base labeled with a unique label and	As shown in FIG. 8 reproduced above, "Labeled and blocked monomers 86 are shown, the label depicted by the asterisk the separate <u>labeled monomers can be</u> <u>distinguished from one another by the wavelength of</u> <u>fluorescent emission</u> ." <u>Dower</u> , col. 15, line 1-7, and FIG. 8 (emphasis added).
	"FIG. 9 schematically illustrates the synthesis of a generic protected nucleotide. A suitable nucleotide is labeled with the <i>FMOC fluorescently detectable label</i> FIG. 9 also outlines various reactions which lead to useful nucleotides." <u>Dower</u> , col. 18, line 64 - col. 19, line 10 (emphasis added).
	An annotated portion of FIG. 9 is reproduced above, where B is the nucleic acid base and FMOC is the fluorescently detectable label. FIG. 9 shows the label attached to the base.
contains a removable chemical moiety capping the 3'-OH group of the sugar of the nucleotide analogue, and	"The primer is elongated one nucleotide at a time by use of a particular <u>modified nucleotide analog to which a</u> <u>blocking agent is added and which prevents further</u> <u>elongation</u> ." <u>Dower</u> , col. 14, ll. 50-53 (emphasis added). "To prevent elongation by a unit length greater than one monomer, the nucleotide <u>should be blocked at the</u> position of 3' alongation " Dower col. 15 JL 33-35
	 <u>position of 5 elongation</u>. <u>Dower</u>, col. 15, il. 55-55 (emphasis added). "[T]ypically, the blocking agent will be <u>a reversible</u> <u>blocking agent</u> thereby allowing for deblocking and subsequent elongation" and "Blocking groups are preferably sensitive to mild acidic conditions, mild basic conditions, or light." <u>Dower</u>, col. 15, ll. 38-40 and 52-56 (emphasis added); <u>see also col. 18, ll. 52-57 (listing "appropriate blocking agents")</u>
wherein at least one of the four nucleotide	"Fluorescent chain terminators (<i>analogs of dATP, dCTP, dGTP, and TP, each labeled with fluorophore preferably</i>

analogues within (i) or (ii) is deaza- substituted; and	<u>emitting at a distinguishable wavelength</u>) are added to the reaction at a sufficient concentration and under suitable reaction conditions (time, temperature, pH, ionic species, etc., See Sambrook et al. (1989) Molecular Cloning, vols. 1-3, and <u>Prober et al.</u>)." <u>Dower</u> , col. 25, 11. 4-10 (emphasis added).
	<u>Prober et al.</u> referenced by <u>Dower is Prober I (1987)</u> <u>Science</u> 238: 336-341, a copy of which accompanies this Petition. <u>See Dower</u> , col. 17, ll. 33-36.
	<u>Dower</u> incorporates all documents listed in the specification by reference stating "All publications and patent applications are herein incorporated by reference." <u>Dower</u> , col. 28, ll. 38-39.
	<u>Prober I</u> discloses "the set of four fluorescence-tagged chain-terminating reagents we have designed and synthesized is shown in FIG. 2. These are ddNTP's to which succinylfluorescein has been attached via a linker to the heterocyclic base the linker is attached to the <u>7 position in the 7-deazapurines</u> ." <u>Prober I</u> , page 337, 1st column (emphasis added).
c) detecting the unique label of the incorporated nucleotide analogue, so as to thereby determine the	As shown in FIG. 8 "Step 2 is a scan, where the signal at the position corresponding to template 82 indicates that the guanosine analog was incorporated." <u>Dower</u> , col. 15, ll. 11-13.
identity of the nucleotide analogue incorporated into the nucleic acid primer extension strand.	"The process for sequencing may be summarized as follows for enzymatic polymerization 3) The matrix is <u>scanned to determine which base was added to each</u> <u>location</u> . This step correlates the added base with a position on the matrix." <u>Dower</u> , col. 27, ll. 14-25 (emphasis added).
2. The method of claim 1, further comprising removing the chemical moiety capping the 3'-OH group of the sugar of	As shown in FIG. 8, "Reaction 2 is performed, <u>which</u> <u>removes both the label and blocking group</u> <u>Reaction 3</u> <u>is equivalent to reaction 1</u> , though the substrate primer has been elongated by one monomer." <u>Dower</u> , col. 15, ll. 13-15 (emphasis added).

the incorporated	"The process for sequencing may be summarized as
nucleotide analogue,	follows for enzymatic polymerization
thereby permitting the	6) The terminators are activated for further chain
incorporation of a	extension, usually by removal of a blocking group.
further nucleotide	7) Steps 2 through 6 are repeated to obtain the base-by-
analogue so as to create	base sequence of many different positionally separated
a growing annealed	DNA fragments simultaneously." Dower, col. 27, ll. 14-
nucleic acid primer	33 (emphasis added).
extension strand.	
3. The method of	As shown in FIG. 8 reproduced above, Dower discloses
claim 1, wherein the	"Labeled and blocked monomers 86 are shown, the label
unique label is a	depicted by the asterisk the separate <i>labeled</i>
fluorescent label.	monomers can be distinguished from one another by the
	wavelength of fluorescent emission." Dower, col. 15,
	line 1-7, and FIG. 8 (emphasis added).
	"FIG. 9 schematically illustrates the synthesis of a
	generic protected nucleotide. A suitable nucleotide is
	labeled with the FMOC fluorescently detectable label
	FIG. 9 also outlines various reactions which lead to
	useful nucleotides." Dower, col. 18, line 64 - col. 19,
	line 10 (emphasis added).
4. The method of	"Polymerases useful in connection with the invention
claim 1, wherein the	include modified and cloned versions of <u>T7 DNA</u>
polymerase is Taq	polymerase Tag DNA polymerase from thermostable
DNA polymerase, T7	Thermus aquaticus." Dower, col. 17, ll. 48-57 (emphasis
DNA polymerase or	added).
Vent DNA polymerase.	
5. The method of	"The present invention relates to the determination of the
claim 1, wherein in	sequences of <i>polymers</i> immobilized to a substrate. In
step a) a plurality of	particular, one embodiment of the invention provides a
different nucleic acid	method and apparatus for sequencing many nucleic acid
templates are attached	sequences immobilized at distinct locations on a matrix
to the solid surface.	surface." Dower, col. 1, ll. 21-25 (emphasis added).
6. The method of	"The synthetic mode is easily applied to the
claim 1, wherein said	sequencing of nucleic acids, since one target strand may
nucleic acid template	serve as the <i>template</i> to synthesize the complementary
comprises an RNA	strand. The nucleic acid can be DNA, <u>RNA</u> or mixed
template.	polymers." Dower, col. 14, ll. 38-42 (emphasis added).
7. The method of	"Polymerases useful in connection with the invention

claim 6, wherein the	include various reverse transcriptases." Dower, col.
polymerase is a reverse	17, ll. 48-62.
transcriptase.	
11. A plurality of nucleic acid templates immobilized on a solid surface,	"The present invention relates to the determination of the sequences of <i>polymers</i> immobilized to a substrate. In particular, one embodiment of the invention provides a method and apparatus for sequencing <i>many nucleic acid sequences immobilized at distinct locations on a matrix</i> surface." Dower col 1 II 21-25 (emphasis added)
wherein a nucleic acid	<i>"hybridizing</i> complementary <i>primers</i> to said plurality of
primer is hybridized to	polynucleotides " Dower col 4 11 47-48 (emphasis
such nucleic acid	added).
templates each such	
nucleic acid primer	The synthetic method "involves <i>annealing a primer</i>
comprising a labeled	near to the 3' end of the unknown target sequences."
incorporated nucleotide	Dower, col. 23, ll. 16-18 (emphasis added).
analogue,	
	"The synthetic mode, as illustrated in FIG. 1 is easily
at least one of which is deaza-substituted,	applied to the <u>sequencing of nucleic acids</u> The synthetic scheme depends, in part, on the stepwise elongation by small and identifiable units. A polymerase is used to extend <u>a primer complementary to a target</u> <u>template</u> . <u>The primer is elongated one nucleotide</u> at a time by use of a particular modified nucleotide analog to which a blocking agent is added and which prevents further elongation." <u>Dower</u> , col. 14, ll. 38- 53 (emphasis added)); <u>see also</u> FIG. 8 (showing "PRIMER" step at beginning of sequencing method) "Fluorescent chain terminators (<u>analogs of dATP, dCTP, dGTP, and TP, each labeled with fluorophore preferably emitting at a distinguishable wavelength</u>) are added to the reaction at a sufficient concentration and under suitable reaction conditions (time, temperature, pH, ionic species, etc., See Sambrook et al. (1989) Molecular Cloning, vols. 1-3, and <u>Prober et al.</u>)." <u>Dower</u> , col. 25, ll. 4-10 (emphasis added).
	Science 238: 336-341, a copy of which accompanies this Petition. See Dower, col. 17, ll. 33-36.

wherein each labeled nucleotide analogue comprises a base labeled with a unique	 <u>Dower</u> incorporates all documents listed in the specification by reference stating "All publications and patent applications are herein incorporated by reference." <u>Dower</u>, col. 28, ll. 38-39. <u>Prober I</u> discloses "the set of four fluorescence-tagged chain-terminating reagents we have designed and synthesized is shown in FIG. 2. These are ddNTP's to which succinylfluorescein has been attached via a linker to the heterocyclic base the linker is attached to the <u>7 position in the 7-deazapurines</u>." Prober I, page 337, 1st column (emphasis added). As shown in FIG. 8 reproduced above, "Labeled and blocked monomers 86 are shown, the label depicted by the asterisk the separate <u>labeled monomers can be distinguished from one another by the wavelength of another by the wavelength of a set of the </u>
label and	<u><i>Illiorescent emission.</i></u> <u>Dower</u> , col. 15, line 1-7, and FIG. 8 (emphasis added)
	o (emphasis added).
contains a removable chemical moiety capping the 3'-OH group of the sugar of the nucleotide	"The primer is elongated one nucleotide at a time by use of a particular <u>modified nucleotide analog to which a</u> <u>blocking agent is added and which prevents further</u> <u>elongation</u> ." <u>Dower</u> , col. 14, ll. 50-53 (emphasis added).
analogue.	"To prevent elongation by a unit length greater than one
	position of 3' elongation." Dower, col. 15, ll. 33-35 (emphasis added)
12. The plurality of	"[A] whole <i>matrix array</i> of different polymers targeted
nucleic acids of claim	for sequencing may be exposed to a series of chemical
11, wherein said	manipulations in a batch format. <u>A large array</u> of
plurality are present in	hundreds, thousands, or even millions of <u>spatially</u>
a microarray.	separated homogeneous regions may be simultaneously
	<u>treated by defined sequencing chemistry</u> ." Dower, col. 9, 11. 1-8 (emphasis added).
14. The method of	"The synthetic mode, as illustrated in FIG. 1 is easily
claim 2, wherein the	applied to the <i>sequencing of nucleic acids</i> The
primer extension strand	synthetic scheme depends, in part, on the stepwise
that regults from stop b)	elongation by small and identifiable units. A polymerase

is the nucleic acid	is used to extend <i>a primer complementary to a target</i>
primer onto which the	<u>template</u> . <u>The primer is elongated one nucleotide</u> at a
further nucleotide	time by use of a particular modified nucleotide analog to
analogue is to be	which a blocking agent is added and which prevents
incorporated.	further elongation." <u>Dower</u> , col. 14, ll. 38- 53 (emphasis
-	added); see also FIG. 8.
	"typically the blocking agent will be a reversible
	blocking agent thereby allowing for deblocking and
	subsequent elongation" Dower, col. 15, ll. 38-40
	(emphasis added).
15. The method of	<u>Dower</u> discloses that "One important functional property
claim 1, wherein each	of the monomers is that the <i>label be removable</i> . The
of said unique labels is	removal reaction will preferably be achieved using mild
attached to the	conditions. Blocking groups sensitive to mild <i>acidic</i>
nucleotide analogue via	conditions, mild basic conditions, or light are preferred."
a cleavable linker.	Dower, col. 15, ll. 52-56 (emphasis added).
17. The method of	Dower discloses that the fluorescent label is not the 3'-
claim 1, wherein the	OH capping group stating "The fluorophore is placed <i>in</i>
chemical moiety	a position other than the 3'OH of the nucleoside, and a
capping the 3'-OH	different group placed on the 3'OH of the dNTPs to
group is not a	function as a chain terminator. " <u>Dower</u> col. 25, ll. 35-37
fluorescent dye.	(emphasis added).

Regarding claims 1 and 11, as shown above, <u>Dower</u> identically discloses methods of sequencing by synthesis including use of a deaza-substituted nucleotide analogue via the incorporation of the disclosure of <u>Prober I</u>. <u>Dower</u> col. 23, lines 18-24. In fact, using the synthetic methods of <u>Prober I</u> to attach labels to purine bases requires and necessarily results in the use of 7 deazapurines in the sequencing method of <u>Dower</u>. <u>See</u> Weinstock Decl. ¶ 69. <u>Prober I</u> expressly discloses attaching a fluorescent label to a deazapurine stating "ddNTP's to which succinylfluorescein has been attached via a linker to the heterocyclic base ... the linker is attached ... to the 7 position in the 7-deazapurines." Prober I, page 337,
1st column (emphasis added).

<u>Dower</u> expressly incorporates by reference <u>Prober I</u> stating "All publications and patent applications are herein incorporated by reference." <u>Dower</u>, col. 28, ll. 38-39. As such, <u>Dower</u> incorporates the teachings of <u>Prober I</u>, and as discussed above, the disclosure of <u>Prober I</u> incorporated by <u>Dower</u> is sufficient to meet the all elements rule of anticipation under 35 U.S.C. § 102(b). <u>See Liebel-Flarsheim Co</u>. *v. Medrad, Inc.*, 481 F.3d 1371, 1383 (Fed. Cir. 2007).

4. <u>Ground for Challenge 4 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Dower and Prober I

Petitioner has demonstrated that <u>Dower</u>, through incorporation of <u>Prober I</u>, anticipates claims 1-7, 11-12, 14-15 and 17 of the '698 patent. In the alternative, claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Dower</u> combined with <u>Prober I</u> under 35 U.S.C. § 103. Although <u>Dower</u> was considered by the Examiner, there is no indication that the Examiner considered the combination of <u>Dower</u> with <u>Prober I</u>. Thus, the Examiner failed to appreciate that <u>Dower</u> provides an express teaching, suggestion, and motivation to combine the disclosure of <u>Dower</u> with <u>Prober I</u>, thereby teaching the use of use of deazasubstituted bases in nucleotide analogs in the system and method of <u>Dower</u>.

As disclosed above in **Claim Chart 2**, <u>Dower</u> discloses each element of claims 1-7, 11-12, 14-15 and 17 of the '698 patent. Should it be determined,

however, that Dower does not disclose use of deaza-substituted nucleotide analogs in its method of sequencing by synthesis, Prober I further discloses "ddNTP's to which succinylfluorescein has been attached via a linker to the heterocyclic base ... the linker is attached ... to the <u>7 position in the 7-deazapurines</u>." <u>Prober I</u>, page 337, 1st column (emphasis added). Thus, <u>Prober I</u> teaches the limitation of both claims 1 and 11 relating to nucleotides having deaza-substituted bases.

<u>Dower</u> expressly teaches the combination with <u>Prober I</u> to make the labeled nucleotides stating "Fluorescent chain terminators (analogs of dATP, dCTP, dGTP, and dTTP, each labeled with fluorophore preferably emitting at a distinguishable *wavelength*) are added to the reaction at a sufficient concentration and under suitable reaction conditions (time, temperature, pH, ionic species, etc., See ... Prober et al.)." Dower, col. 25, ll. 4-10 (emphasis added). Thus, it would be obvious to make the combination of Dower and Prober I because Dower provides express teaching to do so. See Weinstock Decl. ¶ 70. Further, it would have been obvious to combine Dower and Prober I for all the reasons discussed in section IV.2 (Tsien and Prober I) above, including because the combination of known features with known systems and methods merely produces a predictable result. See Weinstock Decl. ¶ 70. Additionally, Prober I showed a linker and four label system that was compatible with extension by the Sequenase polymerase enzyme,

and the Sequenase polymerase enzyme was identified as a preferred extension enzyme in <u>Dower</u> at col. 18, lines 21-28. <u>See</u> Weinstock Decl. ¶ 70.

5. <u>Ground for Challenge 5 - Claims 1-7, 11-12, 14-15 and 17 of the</u> <u>'698 patent are invalid as obvious over Rabani in view of Prober I</u>

<u>Rabani</u> published **September 6, 1996**. <u>Rabani</u> qualifies as prior art against the '698 patent under 35 U.S.C. § 102(b) because it was patented more than one year before the '698 patent's earliest claimed filing date. <u>Rabani</u> was submitted to the Patent Office during prosecution of the '698 patent, on page 5 of a 11 page information disclosure statement listing 156 separate references, and there is no indication that <u>Rabani</u> was considered in detail by the Examiner.

<u>Rabani</u> generally discloses nucleic acid sequencing by synthesis methods that utilize 3'-OH capped, chain-terminating nucleotide analogs that include a fluorescent label. Rabani's sequencing by synthesis method is generally discussed, for example, at pages 6-7 of Rabani. As shown in the claim chart below, <u>Rabani</u> and <u>Prober I</u> discloses every element of at least claims 1-7, 11-12, 14-15 and 17 of the '698 patent, and because there are number of prior art reasons to combine <u>Rabani</u> and <u>Prober I</u>, claims 1-7, 11-12, 14-15 and 17 of the '698 patent are obvious under 35 U.S.C. § 103(a).

Claim Chart 3 - Disclosure of Rabani and Prober I

Claim in 7,713,698	Disclosure and Explanation of <u>Rabani</u> + <u>Prober I</u>
1. A method of	"The present invention has applications in the area of
determining the	polynucleotide sequence determination, <i>including DNA</i>

identity of a nucleotide analogue incorporated	sequencing." <u>Rabani</u> , page 1, ll. 16-17 (emphasis added).
into a nucleic acid	
primer extension	"A sequencing cycle comprises the steps of: (1.)
strand, comprising:	polymerizing one or less nucleotide, onto each sample
	molecule <u>at the primer or at subsequent extensions</u>
	<u>thereof</u> and in opposition to (and pairing with) a single
	unique, base of the template polynucleotide strand."
	<u>Kabani</u> , page 6, 11. 29-35 (emphasis added).
	"Various methods may be used to accomplish the
	controlled addition of monomers, <i>including nucleotides</i>
	and especially labeled or protected nucleotides, to the
	daughter strand of a sample template molecule."
	Rabani, page 35, ll. 10-12 (emphasis added).
a) contacting a nucleic	"Sequencing of polynucleotide molecules may be
acid template attached	effected by the (preferably end-wise) <i>immobilization of a</i>
to a solid surface	<i>library of such molecules to a surface</i> at a density
	convenient for detection, which will vary according to
	the detection methodology availed." <u>Rabani</u> , page 6, ll.
• • • • • • •	14-17 (emphasis added).
with a nucleic acid	" <u>Priming</u> , which may be random or non-random, is
primer which	effected by any of a variety of methods, most of which
hybridizes to the	are obvious to those skilled in the relevant arts." <u>Rabani</u> ,
template;	page 6, 11. 19-21 (emphasis added).
	" <i>Priming means</i> required by any particular enzyme must
	then be provided, <i>usually by hybridization of a</i>
	complementary oligo- or polynucleotide to the sample
	template molecules." Rabani, page 10, ll. 6-8 (emphasis
	added).
	"For example, the four nucleotides, each respectively
	labeled with unique removable or neutralizable
	fluorescent labels, may be added to appropriately <i>primed</i>
	sample template molecules in the presence of
	polymerases, at low concentrations." Rabani, page 35. Il.
	19-24 (emphasis added).
b) simultaneously	"For example, <i>the four nucleotides</i> , each respectively
contacting the product	labeled with unique, removable or neutralizable

of step a) with a polymerase and four nucleotide analogues which are either (i) aA, aC, aG, and aT, or (ii) aA, aC, aG, and aU,	fluorescent labels, may be added to appropriately primed sample template molecules <i>in the presence of</i> <i>polymerases</i> , at low concentrations." <u>Rabani</u> , page 35, ll. 19-24 (emphasis added). " <u>Nucleotide analogs</u> comprising such removable protecting groups preferably further comprise labeling moieties." <u>Rabani</u> , page 38, ll. 39-40.
so as to incorporate one of the nucleotide analogues onto the nucleic acid primer and form a nucleic acid primer extension strand, wherein each nucleotide analogue within (i) or (ii) comprises a base labeled with a unique label and	 "A sequencing cycle comprises the steps of: (1.) polymerizing one or less nucleotide, onto each sample molecule at the primer or at subsequent extensions thereof and in opposition to (and pairing with) a single unique, base of the template polynucleotide strand." <u>Rabani</u>, page 6, ll. 29-35 (emphasis added); see also, page 35, ll. 15-34. "For example, the four nucleotides, each respectively labeled with unique, removable or neutralizable fluorescent labels, may be added to appropriately primed sample template molecules in the presence of polymerases, at low concentrations." <u>Rabani</u>, page 35, ll. 19-24 (emphasis added). "Labeling moieties are favorably in communication with or coupled to nucleotides via a linker of sufficient length to ensure that the presence of said labeling moieties on said nucleotides will not interfere with the action of a polymerase enzyme on said nucleotides." <u>Rabani</u>, page 32, ll. 10-11 (emphasis added). "A sequencing cycle comprises the steps of: (5.) optionally removing (by appropriate means) any 3' protecting groups from the nucleotide added during the present cycle, <i>if these are distinct from any cleavably linked labeling moieties</i>." Rabani, page 6, line 29 and page 7, lines 14-18 (emphasis added).
contains a removable chemical moiety capping the 3'-OH	"[P]olymerizing one or less <u>nucleotides</u> , which carry some removable or neutralizable molecular label and may optionally be <u>reversibly 3' protected</u> (or otherwise

Reinhart\8995605

group of the sugar of the nucleotide analogue, and	protected in any manner which modulates polymerization onto each sample molecule at the primer or at subsequent extensions thereof." <u>Rabani</u> , page 6, ll. 30-33 (emphasis added).
	Rabani_discloses a small, removable chemical moiety stating "[e]nzymological evidence concerning binding of <u>3' acetate esterified nucleotides</u> and 5'-triphosphate-3'- (nucleoside-5'-monophosphate) to the triphosphate binding site of E. coli Polymerase I <u>supports the</u> <u>acceptability of 3' modified nucleotides as substrates for</u> <u>this enzyme</u> ." <u>Rabani</u> , page 39, lines 7-12 (emphasis added)
wherein at least one of the four nucleotide	<u>Prober I</u> discloses "the set of four fluorescence-tagged chain-terminating reagents we have designed and sumthasized is shown in EIC 2. These are ddNTPla to
analogues within (1) of	synthesized is shown in FIG. 2. These are doin i P S to
(II) IS ucaza-	to the beterocyclic base the linker is attached to the
substituted, and	7 position in the 7-deazanurines "Prober I page 337
	1st column (emphasis added).
c) detecting the unique	"A sequencing cycle comprises the steps of: (3.)
label of the	detecting, by either direct or indirect methods said
incorporated nucleotide	labeled nucleotides incorporated into said sample
analogue, so as to	molecules, in a manner which repeatably associates
thereby determine the	information obtained about the type of label observed
identity of the	with the unique identity of the template molecule under
nucleotide analogue	observation." Rabani, page 6, ll. 29-40 (emphasis
incorporated into the	added); see also, pages 15-17.
nucleic acid primer	
extension strand.	
2. The method of	"A sequencing cycle comprises the steps of: $(5.)$
claim 1, further	optionally <u>removing (by appropriate means) any 3'</u>
comprising removing	protecting groups (or any other protecting groups which
the chemical moiety	may serve to modulate monomer addition rate to the
capping the 3'-OH	strand being copied from the template molecule) from
group of the sugar of	the nucleotide added during the present cycle, if these are
the incorporated	distinct from any cleavably linked labeling moieties."
nucleotide analogue,	<u>Rabani</u> , page 6, line 29 and page 7, ll. 14-18 (emphasis
thereby permitting the	added).
incornoration of a	

further nucleotide	" <u>Removable protecting groups</u> are particularly
analogue so as to create	advantageous for the genome sequencing applications of
a growing annealed	the present invention because they may be utilized to
nucleic acid primer	permit and ensure that exactly one nucleotide is added to
extension strand.	a sample molecule per sequencing cycle." <u>Rabani</u> , page
	38, 11. 25-28 (emphasis added).
3. The method of	"A modification of VECFM which is particularly suited
claim 1, wherein the	for SMD and SMV relies upon selective fluorescent
unique label is a	excitation of an appropriate dye molecule label (or of
fluorescent label.	molecules within a sample with appropriate fluorescent
	properties independent of labeling) in some sample by
	means of some tightly defined beam." Rabani, page 15,
	ll. 14-18 (emphasis added)
	"Detection methods for the present invention may
	favorably exploit <i>fluorescent labeling techniques</i> ."
	<u>Rabani</u> , page 29, ll. 26-27.
4. The method of	"While well studied DNA polymerase enzymes,
claim 1, wherein the	preferably lacking a 3' to 5' exonuclease activity, or RNA
polymerase is Taq	polymerases or reverse transcriptases may be initially
DNA polymerase, T7	preferred for use in sequencing applications of the
DNA polymerase or	present invention, use of the term polymerase (as well as
Vent DNA polymerase.	the term transcriptase) shall refer to any molecule or
	complex capable of enforcing fidelity of pairing on
	single nucleotides at a structurally defined site of a
	template polynucleotide molecule." <u>Rabani</u> , page 12, ll.
	6-12 (emphasis added).
	"The chain-terminators reported here are incorporated by
	<u>modified T7 DNA polymerase</u> ." <u>Prober I</u> , page 340,
	col. 1 (emphasis added).
5. The method of	"Sequencing of polynucleotide molecules may be
claim 1, wherein in	effected by the (preferably end-wise) immobilization of
step a) a plurality of	<u>a library of such molecules</u> to a surface at a density
different nucleic acid	convenient for detection." <u>Rabani</u> , page 6, Il. 14-16
templates are attached	(emphasis added).
to the solid surface.	
	"The invention relates to the massively parallel single
	molecule examination of associations or reactions
	between <i>large numbers of first complex molecules, which</i>

	<u>may be diverse</u> ." <u>Rabani</u> , page 1, ll. 4-6 (emphasis added).
6. The method of claim 1, wherein said nucleic acid template comprises an RNA template.	"For purposes of genome sequencing applications of the present invention, or directly purified genomic DNA or directly purified <u><i>RNA</i></u> from a particular cell type, etc., may be subjected to fragmentation." <u>Rabani</u> , page 18, ll. 3-9 (emphasis added).
7. The method of claim 6, wherein the polymerase is a reverse transcriptase.	"While well studied DNA polymerase enzymes, preferably lacking a 3' to 5' exonuclease activity, or RNA polymerases or <u>reverse transcriptases</u> may be initially preferred for use in sequencing applications of the present invention, use of the term polymerase (as well as the term transcriptase) shall refer to any molecule or complex capable of enforcing fidelity of pairing on single nucleotides at a structurally defined site of a template polynucleotide molecule." <u>Rabani</u> , page 12, II. 6-12 (emphasis added).
11. A plurality of nucleic acid templates immobilized on a solid surface,	"Sequencing of polynucleotide molecules may be effected by the (preferably end-wise) <i>immobilization of a</i> <i>library of such molecules to a surface</i> at a density convenient for detection, which will vary according to the detection methodology availed." <u>Rabani</u> , page 6, ll. 14-17 (emphasis added).
wherein a nucleic acid primer is hybridized to such nucleic acid templates each such nucleic acid primer comprising a labeled incorporated nucleotide analogue,	" <u>Priming</u> , which may be random or non-random, is effected by any of a variety of methods, most of which are obvious to those skilled in the relevant arts." <u>Rabani</u> , page 6, ll. 19-21 (emphasis added). " <u>Priming means</u> required by any particular enzyme must then be provided, <u>usually by hybridization of a</u> <u>complementary oligo- or polynucleotide to the sample</u> <u>template molecules</u> ." <u>Rabani</u> , page 10, ll. 6-8 (emphasis added).
	"For example, the four nucleotides, each respectively labeled with unique, removable or neutralizable fluorescent labels, may be added to appropriately <u>primed</u> <u>sample template</u> molecules in the presence of polymerases, at low concentrations." <u>Rabani</u> , page 35, ll. 19-24 (emphasis added).

	"A sequencing cycle comprises the steps of: (1.) polymerizing one or less nucleotide, onto each sample molecule <u>at the primer or at subsequent extensions</u> <u>thereof</u> and in opposition to (and pairing with) a single unique, base of the template polynucleotide strand."
	Rabani, page 6, ll. 29-35 (emphasis added).
at least one of which is deaza-substituted,	<u>Prober I</u> discloses "the set of four fluorescence-tagged chain-terminating reagents we have designed and synthesized is shown in FIG. 2. These are ddNTP's to which succinylfluorescein has been attached via a linker to the heterocyclic base the linker is attached to the <u>7 position in the 7-deazapurines</u> ." <u>Prober I</u> , page 337, 1st column (emphasis added).
wherein each labeled	"For example, the four nucleotides, <i>each respectively</i>
nucleotide analogue comprises a base labeled with a unique label and	<u>labeled with unique, removable or neutralizable</u> <u>fluorescent labels</u> , may be added to appropriately primed sample template molecules in the presence of polymerases, at low concentrations." <u>Rabani</u> , page 35, ll. 19-24 (emphasis added).
	"Labeling moieties are favorably in communication with or <u>coupled to nucleotides via a linker</u> of sufficient length to ensure that the presence of said labeling moieties on said nucleotides will not interfere with the action of a polymerase enzyme on said nucleotides." <u>Rabani</u> , page 32, ll. 10-11 (emphasis added).
	"A sequencing cycle comprises the steps of: (5.) optionally removing (by appropriate means) any 3' protecting groups from the nucleotide added during the present cycle, <i>if these are distinct from any cleavably linked labeling moieties</i> ." Rabani, page 6, ll 29 and page 7, ll 14-18 (emphasis added).
contains a removable	"[P]olymerizing one or less <i>nucleotides</i> , which carry
chemical moiety	some removable or neutralizable molecular label and
capping the 3'-OH	may optionally be <u>reversibly</u> <u>3' protected</u> (or otherwise
group of the sugar of	protected in any manner which modulates
the nucleotide	polymerization onto each sample molecule at the
analogue.	primer or at subsequent extensions thereof." <u>Rabani</u> ,

	(11, 20, 22) (simplifying a data d)
	page 0, 11. 50-55 (emphasis added).
	Rabani discloses a small, removable chemical moiety stating "[e]nzymological evidence concerning binding of <u>3' acetate esterified nucleotides</u> and 5'-triphosphate-3'- (nucleoside-5'-monophosphate) to the triphosphate binding site of E. coli Polymerase I <u>supports the</u> <u>acceptability of 3' modified nucleotides as substrates for</u> <u>this enzyme</u> ." <u>Rabani</u> , page 39, lines 7-12 (emphasis added)
12. The plurality of	Rabani discloses detection of "multiple probes (i.e. in
nucleic acids of claim	\underline{arrays})" <u>Rabani</u> , p. 11, ll. 3-15 (emphasis added).
11, wherein said	
a microarray	
14. The method of	" <i>[P]olymerizing</i> one or less <i>nucleotides</i> , which carry
claim 2, wherein the	some removable or neutralizable molecular label and
primer extension strand	may optionally be reversibly 3' protected (or otherwise
that results from step b)	protected in any manner which modulates
is the nucleic acid	polymerization onto each sample molecule at the
primer onto which the	primer or <u>at subsequent extensions thereof</u> ." <u>Rabani</u> ,
further nucleotide	page 6, II. 30-33 (emphasis added).
incorporated	
15 The method of	Rahani discloses nucleotides with " <i>labeling mojeties</i>
claim 1 wherein each	coupled to nucleotides via a linker "Rabani p 32 II
of said unique labels is	10-13 (emphasis added).
attached to the	
nucleotide analogue via	Rabani further discloses removal of moieties attached via
a cleavable linker.	a " <i>photocleavable linker</i> ," and "photocleavable
	protecting groups." Id. at p. 17, ll. 15-21 (emphasis
	added).
1/. The method of	<u>Kabani</u> teaches an embodiment in which the label group $\frac{1}{10}$
claim 1, wherein the	is distinct from the 3-OH capping group stating
chemical molety 2	optionally removing (by appropriate means) <u>any 3</u>
oroun is not a	<u>protecting groups</u> (or any other protecting groups which may serve to modulate monomer addition rate to the
fluorescent dve	strand being copied from the template molecule) from
11401050011t dy 0.	the nucleotide added during the present cycle. <i>if these</i>
	are distinct from any cleavably linked labeling moieties."

Rabani, page 7, ll. 14-18 (emphasis added).
<u>Prober I</u> teaches attachment of the fluorescent label to
the 7 position of a deazapurine stating "the set of four
fluorescence-tagged chain-terminating reagents we have
designed and synthesized is shown in FIG. 2. These are
ddNTP's to which succinylfluorescein has been attached
via a linker to the heterocyclic base the linker is
attached to the <u>7 position in the 7-deazapurines</u> ."
Prober I, page 337, 1st column (emphasis added).

As shown above, <u>Rabani</u> and <u>Prober I</u> disclose every element of claims 1-7, 11-12, 14-15 and 17 of the '698 patent.

As discussed above, Prober I teach the advantages of using deaza-substituted nucleotides in sequencing. For example, Prober I states "[t]he 7-deazapurines were used to facilitate stable linker arm attachment at that site." Prober I, page 337, 1st column. For all the reasons discussed in section IV.2. (Tsien and Prober I) above, it would be obvious to use the labeled deazapurines as taught by Prober I in the sequencing process of Rabani to gain the well-known, prior art benefit of the "stable linker arm attachment" as taught by Prober I. See Weinstock Decl. ¶ 71. Further, combining references teaching sequencing by synthesis methods with references teaching the use of deaza-substituted nucleotide analogues was well known in the art and provided well known advantages. See Section III.2. As such, the combination of Rabani and Prober I merely utilizes well know prior art components for their intended purpose to obtain the same known, predicable results disclosed in the references.

6. <u>Ground for Challenge 6 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as anticipated by Stemple II

<u>Stemple II</u> published as WO 00/53805 on **September 14, 2000**. <u>Stemple II</u> qualifies as prior art against the '698 patent under 35 U.S.C. § 102(a) because it was published before the '698 patent's earliest claimed filing date. <u>Stemple II</u> was submitted to the Patent Office during prosecution of the '698 patent, on page 3 of a 15 page information disclosure statement listing 193 separate references, and there is no indication that <u>Stemple II</u> was considered in detail by the Examiner.

<u>Stemple II</u> generally discloses a sequencing by synthesis method in which a nucleic acid template to be sequenced is attached to a solid support via the interaction with a polymerase. Further, the sequencing process taught by <u>Stemple II</u> utilizes chain terminating nucleotides that include a blocking group at the 3'-OH of the ribose and a fluorescent label attached to the nucleotide base. These elements are clearly demonstrated by the annotated versions of FIG. 1B and FIG. 3 (identical in <u>Stemple I, II and III)</u> reproduced below.

FIG. 3 Example of a DNAS Reaction Center

The analysis and claim chart below demonstrate that claims 1-7, 11-12, 14-

15 and 17 of the '698 patent are invalid as anticipated by Stemple II (cites to

Stemple I and Stemple III are provided as discussed below in Section IV.9).

Claim Chart 4 - Anticipation of Challenged Claims by Stemple I, II, and III.

Claim in 7,713,698	Disclosure and Explanation of <u>Stemple I, II, and III</u>
1. A method of	"The present invention relates to methods for sequencing
determining the	nucleic acid samples." <u>Stemple II</u> , page 1, line 3;

identity of a nucleotide	Stemple III, col. 1, ll. 11-12; Stemple I, page 1, line 6; see also Stemple II, page 3, ll. 9-10; Stemple III, col. 2
into a nucleic acid	<u>see also stemple II</u> , page 3, II. 9 10, <u>stemple III</u> , col. 2, Il. 52-54; <u>Stemple I</u> , page 3, Il. 16-17.
primer extension	
strand, comprising:	"The present invention provides rapid, cost effective,
	high throughput methods for sequencing unknown
	nucleic acid samples." <u>Stemple II</u> , page 3, lines 9-10;
	Stemple III, col. 2, lines 52-54; Stemple I, page 3, lines
a) contrating a mulaia	10-1/.
a) contacting a nucleic	According to the methods of the present invention, a
to a solid surface	plurally of polymerase molecules is immobilized on a solid support through a covalent or non-covalent
to a sona surface	interaction " Stemple II page 3 11 14-15: Stemple III
	col. 2, 11. 60-62; Stemple I, page 3, 11. 21-22 (emphasis
	added).
	" <u><i>Template</i></u> -driven elongation of a nucleic acid is
	mediated by <u>the attached polymerases</u> using the labeled-
	caged nucleoside triphosphate terminators." <u>Stemple II</u> ,
	page 3, II. $1/-19$; <u>Stemple III</u> , col. 2, II. 66-67 thru col. 3, line 1: Stemple I page 3, II, 24, 26 (amphasis added)
	line 1, <u>Stemple 1</u> , page 5, II. 24-26 (emphasis added).
	As shown above, FIG. 3 of Stemple I, II, and III shows
	the DNA sample (i.e., the template) attached to the lower
	slide (i.e., the solid surface) via the interaction with the
	DNA polymerase.
with a nucleic acid	As shown above, FIG. 3 of <u>Stemple I, II, and III</u> shows a
primer which	primer hybridized to the DNA sample (i.e., the template).
nyorialzes to the	"A nucleic acid sample and <i>oligonucleotide primers</i> are
template,	introduced to the reaction chamber in a buffered solution
	containing all four labeled-caged nucleoside triphosphate
	terminators." <u>Stemple II</u> , page 3, ll. 15-17; <u>Stemple III</u> ,
	col. 2, ll. 62-66; <u>Stemple I</u> , page 3, ll. 22-24 (emphasis
	added).
b) simultaneously	As shown above, FIG. 3 of <u>Stemple I, II, and III</u> show
contacting the product	the DNA sample (i.e., the template) attached to the lower
or step a) with a	side (i.e., the solid surface) via the interaction with the
porymenase and four nucleotide analogues	DivA polymerase.
nucleonue analogues	[]

which are either (i) aA, aC, aG, and aT, or (ii) aA, aC, aG, and aU,	"A nucleic acid sample and oligonucleotide primers are introduced to the reaction chamber in a buffered solution containing <u>all four labeled-caged nucleoside</u> <u>triphosphate terminators</u> ." <u>Stemple II</u> , page 3, ll. 15-17; <u>Stemple III</u> , col. 2, ll. 62-66; <u>Stemple I</u> , page 3, ll. 22-24 (emphasis added).
	"Panel C [of Fig. 1] depicts <u>the four different nucleotides</u> each labeled with a fluorochrome with distinct spectral properties." <u>Stemple II</u> , page 4, ll. 26-27; <u>Stemple III</u> , col. 3, ll. 63-67; <u>Stemple I</u> , page 5, ll. 8-9 (emphasis added).
	"During each sequencing cycle, four images of the entire array are produced, and each image corresponds to excitation of one of the four fluorescently labeled <u>nucleotide bases A, C, G, or T (U)</u> ." <u>Stemple II</u> , page 21, 11. 17-19; <u>Stemple III</u> , col. 15, 11. 53-56; <u>Stemple I</u> , page 20, 11. 22-24 (emphasis added).
so as to incorporate one of the nucleotide analogues onto the nucleic acid primer and form a nucleic acid primer extension	" <u><i>Template-driven elongation of a nucleic acid</i> is</u> mediated by the attached polymerases using the labeled- caged nucleoside triphosphate terminators." <u>Stemple II</u> , page 3, ll. 17-19; <u>Stemple III</u> , col. 2, ll. 66-67 thru col. 3, line 1; <u>Stemple I</u> , page 3, ll. 24-26 (emphasis added).
strand,	"Reaction centers are monitored by the microscope system until a majority of sites contain immobilized polymerase bound to a nucleic acid template <u>with a</u> <u>single incorporated labeled-caged nucleotide</u> <u>terminator</u> ." <u>Stemple II</u> , page 3, ll. 19-21; <u>Stemple III</u> , col. 3, ll. 1-5; <u>Stemple I</u> , page 3, ll. 26-28 (emphasis added).
	"The modified 3'-0-(-2-Nitrobenzyl)- <u><i>dNTP</i></u> is incorporated into the growing DNA chain." <u>Stemple II</u> , p. 13, ll. 9-10 (emphasis added); <u>see also p. 13, ll. 4-25</u> and p. 29, ll. 14-17; <u>Stemple III, col. 9, ll. 59-61;</u> see also <u>col. 9, l. 50-col 10, l. 17 and col. 21, ll. 39-41</u> ; <u>Stemple I,</u> p. 12, l. 26-27; <u>see also p. 12, l. 20-p. 13, l. 13 and p. 29,</u> ll. 1-3.

	-
wherein each nucleotide analogue within (i) or (ii) comprises a base labeled with a unique label and	"Four fluorochromes with <u>distinct spectral properties</u> <u>allow the four nucleotides to be distinguished</u> during the detection phase of the DNAS reaction cycle." <u>Stemple</u> <u>II</u> , page 14, ll. 21-23; <u>Stemple III</u> , col. 10, ll. 53-56; <u>Stemple I</u> , page 14, ll. 9-10 (emphasis added). FIG. 1B of <u>Stemple I</u> , II, and III shows a 3'-OH blocked and base-labeled nucleotide.
contains a removable chemical moiety capping the 3'-OH group of the sugar of the nucleotide analogue, and wherein at least one of the four nucleotide analogues within (i) or (ii) is deaza- substituted; and	 The differentially-labeled nucleotides used in the sequencing methods of the present invention have a detachable labeling group and <u>are blocked at the 3'</u> <u>portion with a detachable blocking group</u>." Stemple II, page 4, ll. 1-3; <u>Stemple III</u>, col. 3, ll. 22-25; <u>Stemple I</u>, page 4, ll. 11-13 (emphasis added). "In an alternative configuration a photolabile group is attached to the 3'-OH <u>and a fluorochrome-photolabile linker conjugate is attached directly to the base of the nucleotide as described by Anasawa et al, WO <u>98/33939</u>." <u>Stemple II</u>, page 31, ll. 10-12; <u>Stemple III</u>, col. 22, ll. 53-57; <u>Stemple I</u>, page 30, ll. 25-27 (emphasis added).</u>
	<u>Stemple II</u> specifically incorporates by reference "PCT Patent Application WO 33939." <u>Stemple II</u> , page 27, ll. 30-31; <u>Stemple III</u> , col. 12, ll. 55-57; <u>Stemple I</u> , page 17, l. 15.
	<u>Anazawa</u> discloses attachment of fluorescent labels to the 7 position of the 7-deaza-guanine base of the nucleotide analog. <u>See Anazawa</u> , Fig. 7 and page 5, 1. 36 - page 6, line 9 (<u>also citing</u> " Science 238, 336 – 341, 1987," <u>i.e. Prober I</u>).
c) detecting the unique	"Specific nucleotide incorporation is then determined for
label of the	each active reaction center Following detection "
incorporated nucleotide	Stemple II nage 3 11 $22-23$: Stemple III col 15 11 23
analogue so as to	24. Stemple I page 4 11 1-2 (emphasis added)
thereby determine the	21, <u>stempter</u> , page 1, n. 12 (emphasis added).
identity of the	"Four fluorochromes with <i>distinct spectral properties</i>
nucleotide analogue	allow the four nucleotides to be distinguished during the
incorporated into the	<i>detection phase</i> of the DNAS reaction cycle." Stemple
nucleic acid primer	<u>II</u> , page 14, ll. 21-23; <u>Stemple III</u> , col. 10, ll. 53-56;

extension strand	Stemple I, page 14, 11, 9-10 (emphasis added)
2 The method of	"Following detection the reaction chamber is irradiated
claim 1 further	to <i>uncage the incorporated nucleotide</i> and flushed with
comprising removing	wash buffer once again The sequencing cycle outlined
the chemical mojety	above is <i>repeated</i> until a large proportion of reaction
capping the 3'-OH	centers fail "Stemple II page 3 11 23-31. Stemple III
group of the sugar of	col 15 ll $24-39$: Stemple I page 4 ll $2-10$ (emphasis
the incorporated	added): see also Fig. 2 (showing cycle)
nucleotide analogue	added), <u>see also</u> 1 ig. 2 (showing cycle).
thereby permitting the	
incorporation of a	
further nucleotide	
analogue so as to create	
analogue so as to create	
a growing anneared	
avtancion strand	
2 The method of	"Four fluorochromes with distinct spectral properties
3. The method of	four indotocinomes with <u>atsunct spectral properties</u>
chann 1, wherein the	detection phase of the DNAS reaction guilde" Stemple
fluorescent label	U page 14 11 21 22: Stemple III. col. 10 11 52 56:
nuorescent label.	$\underline{\text{II}}$, page 14, II. 21-25, <u>Stemple III</u> , col. 10, II. 55-50, Stemple L page 14, II. 0, 10 (emphasis added)
1 The method of	<u>Stempte 1</u> , page 14, 11. 9-10 (emphasis added).
4. The method of	In a preferred embodiment, sequencing is done with a
claim 1, wherein the	DNA-dependent DNA polymerase Examples of
mal-manania Taa	DNA day and ant DNA native areas include the
polymerase is Taq	DNA-dependent DNA polymerases include the
polymerase is Taq DNA polymerase, T7	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those
polymerase is Taq DNA polymerase, T7 DNA polymerase or	DNA-dependent DNA polymerases include the bacteriophage T4 and $\underline{T7}$ DNA polymerases, and those from <i>Thermus aquaticus</i> (\underline{Taq}), and <i>Thermococcus</i>
polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase.	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, ll. 2-8; <u>Stemple III</u> ,
polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase.	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, ll. 2-8; <u>Stemple III</u> , col. 6 ll. 59 - col. 7, line 2; <u>Stemple I</u> , page 8, ll. 25 -
polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase.	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, ll. 2-8; <u>Stemple III</u> , col. 6 ll. 59 - col. 7, line 2; <u>Stemple I</u> , page 8, ll. 25 - page 9, line 3(emphasis added).
polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase.	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, ll. 2-8; <u>Stemple III</u> , col. 6 ll. 59 - col. 7, line 2; <u>Stemple I</u> , page 8, ll. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing
 polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase. 5. The method of claim 1, wherein in 	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, ll. 2-8; <u>Stemple III</u> , col. 6 ll. 59 - col. 7, line 2; <u>Stemple I</u> , page 8, ll. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing apparatus and the methods employed to determine the
 polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase. 5. The method of claim 1, wherein in step a) a plurality of 	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, ll. 2-8; <u>Stemple III</u> , col. 6 ll. 59 - col. 7, line 2; <u>Stemple I</u> , page 8, ll. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing apparatus and the methods employed to determine the nucleotide sequence of <u>many single nucleic acid</u>
 polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase. 5. The method of claim 1, wherein in step a) a plurality of different nucleic acid 	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) Stemple II, page 9, ll. 2-8; Stemple III, col. 6 ll. 59 - col. 7, line 2; Stemple I, page 8, ll. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing apparatus and the methods employed to determine the nucleotide sequence of <u>many single nucleic acid</u> <u>molecules simultaneously, in parallel</u> ." Stemple I, II,
 polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase. 5. The method of claim 1, wherein in step a) a plurality of different nucleic acid templates are attached 	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, 11. 2-8; <u>Stemple III</u> , col. 6 11. 59 - col. 7, line 2; <u>Stemple I</u> , page 8, 11. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing apparatus and the methods employed to determine the nucleotide sequence of <u>many single nucleic acid</u> <u>molecules simultaneously, in parallel</u> ." <u>Stemple I, II, and III</u> , Abstract.
 polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase. 5. The method of claim 1, wherein in step a) a plurality of different nucleic acid templates are attached to the solid surface. 	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, ll. 2-8; <u>Stemple III</u> , col. 6 ll. 59 - col. 7, line 2; <u>Stemple I</u> , page 8, ll. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing apparatus and the methods employed to determine the nucleotide sequence of <u>many single nucleic acid</u> <u>molecules simultaneously, in parallel</u> ." <u>Stemple I, II,</u> and III, Abstract.
 polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase. 5. The method of claim 1, wherein in step a) a plurality of different nucleic acid templates are attached to the solid surface. 6. The method of	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, ll. 2-8; <u>Stemple III</u> , col. 6 ll. 59 - col. 7, line 2; <u>Stemple I</u> , page 8, ll. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing apparatus and the methods employed to determine the nucleotide sequence of <u>many single nucleic acid</u> <u>molecules simultaneously, in parallel</u> ." <u>Stemple I, II,</u> and III, Abstract.
 polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase. 5. The method of claim 1, wherein in step a) a plurality of different nucleic acid templates are attached to the solid surface. 6. The method of claim 1, wherein said 	 DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus litoralis</i> (<u>Vent</u>) Stemple II, page 9, ll. 2-8; Stemple III, col. 6 ll. 59 - col. 7, line 2; Stemple I, page 8, ll. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing apparatus and the methods employed to determine the nucleotide sequence of <u>many single nucleic acid</u> <u>molecules simultaneously, in parallel</u>." Stemple I, II, and III, Abstract. "In an alternative preferred <i>embodiment where RNA is used as template</i> the selected DNA-dependent DNA
 polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase. 5. The method of claim 1, wherein in step a) a plurality of different nucleic acid templates are attached to the solid surface. 6. The method of claim 1, wherein said nucleic acid template 	DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus</i> <i>litoralis</i> (<u>Vent</u>) <u>Stemple II</u> , page 9, ll. 2-8; <u>Stemple III</u> , col. 6 ll. 59 - col. 7, line 2; <u>Stemple I</u> , page 8, ll. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing apparatus and the methods employed to determine the nucleotide sequence of <u>many single nucleic acid</u> <u>molecules simultaneously, in parallel</u> ." <u>Stemple I, II,</u> and III, Abstract. "In an alternative preferred <i>embodiment where RNA is</i> <i>used as template</i> the selected DNA-dependent DNA polymerase functions as an RNA-dependent DNA
polymerase is Taq DNA polymerase, T7 DNA polymerase or Vent DNA polymerase. 5. The method of claim 1, wherein in step a) a plurality of different nucleic acid templates are attached to the solid surface. 6. The method of claim 1, wherein said nucleic acid template comprises an RNA	 DNA-dependent DNA polymerases include the bacteriophage T4 and <u>T7</u> DNA polymerases, and those from <i>Thermus aquaticus</i> (<u>Taq</u>), and <i>Thermococcus litoralis</i> (<u>Vent</u>) <u>Stemple II</u>, page 9, ll. 2-8; <u>Stemple III</u>, col. 6 ll. 59 - col. 7, line 2; <u>Stemple I</u>, page 8, ll. 25 - page 9, line 3(emphasis added). "The present invention provides a novel sequencing apparatus and the methods employed to determine the nucleotide sequence of <u>many single nucleic acid</u> <u>molecules simultaneously, in parallel</u>." <u>Stemple I, II, and III</u>, Abstract. "In an alternative preferred <i>embodiment where RNA is used as template</i> the selected DNA-dependent DNA polymerase functions as an RNA-dependent DNA polymerase, or reverse transcriptase" <u>Stemple II</u>, page 9, line 10, page 10, page 10, page 10, page 10, page 9, line 10, page 10, page

	11. 25 - page 9, 11. 8-10 (emphasis added).
7. The method of	"In an alternative preferred embodiment where RNA is
claim 6, wherein the	used as template the selected DNA-dependent DNA
polymerase is a reverse	polymerase functions as an RNA-dependent DNA
transcriptase.	polymerase, or <i>reverse transcriptase</i> " Stemple II, page
-	9, Il. 15-17; <u>Stemple III</u> , col. 7, Il. 12-15; <u>Stemple I</u> , page
	8, 11. 25 - page 9, 11. 8-10 (emphasis added).
11. A plurality of	"The present invention provides a novel sequencing
nucleic acid templates	apparatus and the methods employed to determine the
immobilized on a solid	nucleotide sequence of <i>many single nucleic acid</i>
surface,	molecules simultaneously, in parallel." Stemple I, II,
	and III, Abstract.
wherein a nucleic acid	"Depicted in FIG. 2 is a single round of the reaction
primer is hybridized to	cycle, i.e., (1) the incorporation of a labeled-caged
such nucleic acid	nucleotide; (2) the detection of the labeled nucleotide;
templates each such	and (3) the unblocking of the caged nucleotide As a
nucleic acid primer	result the primer is extended by one base and the 3'-
comprising a labeled	OH is restored so that another nucleotide can be
incorporated nucleotide	incorporated on the next cycle." Stemple II, page 15,
analogue,	line 31 - page 16, line 10; <u>Stemple III</u> , col. 11, ll. 1-18;
	Stemple I, page 14, ll. 18-29 (emphasis added); see also
	Fig. 2 (showing cycle).
at least one of which is	"In an alternative configuration a photolabile group is
deaza-substituted,	attached to the 3'-OH and a fluorochrome-photolabile
	linker conjugate is attached directly to the base of the
	nucleotide as described by Anasawa et al, WO
	<u>98/33939</u> ." <u>Stemple II</u> , page 31, ll. 10-12; <u>Stemple III</u> ,
	col. 22, ll. 53-57; <u>Stemple I</u> , page 30, ll. 25-27 (emphasis
	added).
	<u>Anazawa et al.</u> discloses attachment of fluorescent labels
	to the / position of the /-deaza-guanine base of the
	nucleotide analog. <u>Anazawa</u> , Fig. / and page 5, 1. 36 -
	page 6, line 9 (also citing "Science 238, $336 - 341$,
1 1 1 1 1 1	<u>1987," i.e. Prober 1).</u>
wherein each labeled	"Four fluorochromes with <u>distinct spectral properties</u>
nucleotide analogue	<u>allow the four nucleotides to be distinguished</u> during the
comprises a base	detection phase of the DNAS reaction cycle." <u>Stemple</u>
labeled with a unique	<u>II</u> , page 14, II. 21-23; <u>Stemple III</u> , col. 10, II. 53-56;
label and	Stemple I, page 14, II. 9-10 (emphasis added).

Reinhart\8995605

	FIG 1B of Stemple L. II. and III shows a 3' OH blocked
	and base labeled nucleotide
containg a romayable	"The differentially lebeled muchestides used in the
contains a removable	The differentially-labeled nucleondes used in the
chemical molety	sequencing methods of the present invention have a
capping the 3'-OH	detachable labeling group and <u>are blocked at the 3'</u>
group of the sugar of	portion with a detachable blocking group." Stemple II,
the nucleotide	page 4, II. 1-3; <u>Stemple III</u> , col. 3, II. 22-25; <u>Stemple I</u> ,
analogue.	page 4, II. 11-13 (emphasis added).
12. The plurality of	" <u>A diagram of the DNAS reaction center array is given</u>
nucleic acids of claim	in FIG. 5 each reaction center is attached to the lower
11, wherein said	slide of the reaction chamber. Depicted in the left side
plurality are present in	panel (Microscope Field) is the view of an entire array."
a microarray.	Stemple II, page 7, ll. 26-29; Stemple III, col. 5, l. 65 -
	col. 6, l. 2; Stemple I, page 8, ll. 2-5 (emphasis added).
14. The method of	"Depicted in FIG. 2 is a single round of the reaction
claim 2, wherein the	cycle, i.e., (1) the incorporation of a labeled-caged
primer extension strand	nucleotide; (2) the detection of the labeled nucleotide;
that results from step b)	and (3) the unblocking of the caged nucleotide As a
is the nucleic acid	result the primer is extended by one base and the 3'-
primer onto which the	OH is restored so that another nucleotide can be
further nucleotide	incorporated on the next cycle." Stemple II, page 15,
analogue is to be	line 31 - page 16, line 10; Stemple III, col. 11, ll. 1-18;
incorporated.	Stemple I, page 14, ll. 18-29 (emphasis added); see also
1	Fig. 2 (showing cycle).
15. The method of	"In another preferred embodiment, <i>the labeling group is</i>
claim 1, wherein each	attached to the base of each nucleotide with a detachable
of said unique labels is	linker rather than to the detachable 3' blocking group."
attached to the	Stemple II, page 4, 11, 7-8: Stemple III, col. 3, 11, 31-33:
nucleotide analogue via	Stemple I, page 4, II, 17-18 (emphasis added)
a cleavable linker.	<u></u> , F. Ø, (
17. The method of	"In another preferred embodiment, the labeling group is
claim 1, wherein the	attached to the base of each nucleotide with a detachable
chemical moiety	linker rather than to the detachable 3' blocking group."
capping the 3'-OH	Stemple II, page 4, ll. 7-8; Stemple III. col. 3, ll. 31-33:
group is not a	Stemple I, page 4, ll. 17-18 (emphasis added).
fluorescent dye.	
As shown above, <u>Stemple II</u> identically discloses every element of claims 1-7, 11-12, 14-15 and 17 of the '698 patent, and therefore <u>Stemple II</u> anticipates claims 1-7, 11-12, 14-15 and 17 of the '698 patent under 35 U.S.C. § 102(a).

As discussed above, <u>Stemple II's</u> citation and incorporation by reference of <u>Anazawa</u>, satisfies the "all elements rule" of anticipation. In particular, <u>Stemple II</u> states that labels should be attached to the base using the method disclosed in <u>Anazawa</u>. The method of <u>Anazawa</u> converts the 7 position of purines to a carbon (making them "deaza") to increase the stability of the nucleotide. Thus, following the method of <u>Anazawa</u> as instructed by <u>Stemple II</u> necessarily requires the use of deaza bases. <u>See</u> Weinstock Decl. ¶ 72. The same is true when following the teachings of <u>Prober I</u>.

7. <u>Ground for Challenge 7 - Claims 1-7, 11-12, 14-15 and 17 of the</u> <u>'698 patent are invalid as obvious in view of Stemple II and Anazawa</u>

Petitioner has demonstrated that <u>Stemple II</u>, through direct reference to <u>Anazawa</u>, anticipates claims 1-7, 11-12, 14-15 and 17 of the '698 patent. Independent claims 1 and 11, and claims 2-7, 12, 14-15 and 17 depending therefrom, are also obvious in view of <u>Stemple II</u> combined with <u>Anazawa</u> under 35 U.S.C. § 103. <u>Anazawa</u> was published on Aug. 6, 1998, and thus qualifies as prior art under 35 U.S.C. § 102(b).

<u>Stemple II</u> states that a fluorescent label and linker "is attached directly to the base of the nucleotide as described by Anasawa [*sic*], WO 98/33939." <u>Stemple</u>

<u>II</u>, col. 22, ll. 53-57. <u>Stemple II</u> thus provides an express teaching, suggestion, and motivation to combine <u>Stemple II</u> with the disclosures of <u>Anazawa</u> with respect use of 7-deazapurine nucleotide analogues in methods for sequencing by synthesis. <u>See, e.g., Anazawa</u>, Figs. 3-7 (<u>also citing Prober I</u>) and Fig. 7 and page 5, l. 36 - page 6, line 9; <u>see</u> Weinstock Decl. ¶ 73. Thus, it would have been obvious for one of ordinary skill in the art to combine the teachings of <u>Stemple II</u> with the 7-deazapurine base feature, and attachment of the label to the 7 position of that deazapurine base, as disclosed in <u>Anazawa</u>

8. <u>Ground for Challenge 8 - Claims 1-7, 11-12, 14-15 and 17 of the</u> <u>'698 patent are invalid as obvious in view of Stemple II and Prober I</u>

Independent claims 1 and 11, and claims 2-7, 12, 14-15 and 17 depending therefrom, are also obvious in view of <u>Stemple II</u> combined with <u>Prober I</u> under 35 U.S.C. § 103. As shown above in Claim Charts 4 and i, <u>Stemple II</u> and <u>Prober I</u> disclose every element of claims 1 and 11, and <u>Stemple II</u> discloses each limitation of dependent claims 2-7, 12, 14-15 and 17 of the '698 patent.

As shown above, <u>Prober I</u> teaches the advantages of using deazapurinebased nucleotides in sequencing methods. For all the reasons discussed in section IV.2. (<u>Tsien and Prober I</u>) above, it would be obvious to use the labeled deazapurines as taught by <u>Prober I</u> in the sequencing process of <u>Stemple II</u> to gain the well-known, prior art benefit of the "stable linker arm attachment" as taught by <u>Prober I</u>. <u>See</u> Weinstock Decl. ¶ 74. Further, combining references teaching sequencing by synthesis methods with references teaching the use of deazasubstituted nucleotide analogues was well known in the art and provided well known advantages. <u>See</u> Section III.2. As such, the combination of <u>Stemple II</u> and <u>Prober I</u> merely utilizes well know prior art components for their intended purpose to obtain the same known, predicable results disclosed in the references.

9. <u>Ground for Challenge 9 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as anticipated by Stemple III

Stemple III issued as U.S. Patent No. 7,270,951 on September 18, 2007, as the national stage application of the PCT application that published as <u>Stemple II</u>. <u>Stemple III</u> also claims priority under 35 U.S.C. § 120 to U.S. application serial no. 09/266,187 ("<u>Stemple I</u>"), filed **March 10, 1999**, as a continuation-in-part application. Because the March 10, 1999 filing date of <u>Stemple I</u> is before the '698 patent's earliest claimed filing date, <u>Stemple III</u> also qualifies as prior art under 35 U.S.C. § 102(e).¹ <u>Claim Chart 4</u> provides citations to the relevant portions of the <u>Stemple III</u> reference and corresponding support in <u>Stemple I</u> for the priority date of March 10, 1999. <u>See</u> Weinstock Decl. ¶ 75. Accordingly, claims 1-7, 11-12, 14-15 and 17 of the '698 patent are invalid as anticipated under 35 U.S.C § 102(e) by Stemple III.

¹ The priority claim under 35 U.S.C. § 120 is shown on the front page of <u>Stemple III</u>.

65

10. <u>Ground for Challenge 10 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Stemple III and Prober I

Independent claims 1 and 11, and claims 2-7, 12, 14-15 and 17 depending therefrom, are also obvious in view of <u>Stemple III</u> combined with <u>Prober I</u> under 35 U.S.C. § 103. As shown above in Claim Charts 4 and 1, <u>Stemple III</u> and <u>Prober I</u> disclose every element of claims 1 and 11, and <u>Stemple III</u> discloses each limitation of dependent claims 2-7, 12, 14-15 and 17 of the '698 patent. For the reasons discussed above in Section IV.8, one of ordinary skill in the art would be motivated to combine the teachings of <u>Stemple III</u> and <u>Prober I</u>. <u>See</u> Weinstock Decl. ¶ 76.

11. <u>Ground for Challenge 11 - Claims 5 and 12 of the '698 patent</u> are invalid as obvious in view of Tsien and Prober I in further view of Rabani

As shown above in Section IV.1, <u>Tsien</u> identically discloses the limitations added in dependent claims 5 and 12. However, in the alternative, claims 5 and 12 of the '698 patent are also obvious in view of <u>Tsien Prober I</u>, and <u>Rabani</u> under 35 U.S.C. § 103. Claim 5 recites "wherein in step a) a plurality of different nucleic acid templates are attached to the solid surface," and claim 12 recites "wherein said plurality are present in a microarray." <u>Rabani</u> identifies that "[t]he invention relates to the massively parallel single molecule examination of associations or reactions between <u>large numbers of first complex molecules, which may be</u> <u>diverse</u>." <u>Rabani</u>, page 1, II. 4-6 (emphasis added). <u>Rabani</u> also discloses detection of "*multiple probes (i.e. in arrays* ...)" <u>Rabani</u>, p. 11, ll. 3-15 (emphasis added). Modifying the sequencing process taught by <u>Tsien</u> to either sequence a large number of diverse molecules or to use an array format as taught by <u>Rabani</u> would be obvious because it is merely the use of known techniques to improve the similar <u>Tsien</u> systems and methods in the same way that the known features improve the methods and reagents of <u>Rabani</u>. <u>See</u> Weinstock Decl. ¶ 77.

12. <u>Ground for Challenge 12 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Dower and Prober II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Dower</u> combined with <u>Prober II</u> under 35 U.S.C. § 103. <u>Prober II</u> issued September 7, 1993. <u>Prober II</u> qualifies as prior art against the '698 patent under 35 U.S.C. § 102(b) because it was patented more than one year before the '698 patent's earliest claimed filing date.

As previously explained, <u>Dower</u> teaches systems and methods for polymerase-mediated, template directed, DNA sequencing. <u>Prober II</u> specifically teaches that nucleotide analogues incorporating 7-deazapurines may be used in polymerase-mediated, template directed, DNA sequencing reactions. <u>Prober II</u> expressly teaches use of "the unnatural 7-deazapurines" for the labeled nucleotide analogues used during sequencing, stating "The unnatural 7-deazapurines are employed so that the reporter may be attached <u>without adding a net charge to the</u> <u>base portion</u> or <u>destabilizing the glycosidic linkage</u>." <u>Prober II</u>, col. 19, lines 4-7 (emphasis added). Further, <u>Prober II</u> expressly teaches the advantage of attaching the label group to 7-position of purines stating "the <u>7-position on purines</u> may carry even a relatively <u>bulky substituent without significantly interfering with</u> <u>overall binding or recognition</u>." <u>Prober II</u>, col. 18, lines 66-68 (emphasis added).

Thus, it would have been obvious for one of ordinary skill in the art to combine the teachings of Dower with the 7-deazapurine disclosed in Prober II because it is merely the use of known techniques to improve similar Dower systems and methods in the same way that the known features improve the methods and reagents of Prober II. Furthermore, it would have been obvious to use the features taught by Prober II for their intended purpose, as disclosed by Prober II, to enhance the capability of the Dower systems and methods in the same way they enhance the capability of the Prober II methods and reagents. Additionally, it would have been obvious to combine Dower and Prober II because the combination of known features with known systems and methods merely produces a predictable result. Further, combining references teaching sequencing by synthesis methods with references teaching the use of deaza-substituted nucleotide analogues was well known in the art and provided well known advantages. See Section III.2. Furthermore, Prober II discloses the synthesis scheme underlying Prober I, and as discussed in Section IV.3 Dower expressly identifies Prober I as providing additional details about the fluorescent labeled

dNTPs that may be used in the sequencing method of <u>Dower</u>. <u>See Dower</u>, col. 17, ll. 33-36. See Weinstock Decl. ¶¶ 78, 79.

13. <u>Ground for Challenge 13 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Tsien and Prober II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Tsien</u> combined with <u>Prober II</u> under 35 U.S.C. § 103. The disclosure of <u>Tsien</u> is shown above in Claim Chart 1, and the disclosure of <u>Prober II</u> is shown above in Section IV.12. Both <u>Tsien</u> and <u>Prober II</u> relate to polymerase-based DNA sequencing methods, and it would be obvious to modify the sequencing method of <u>Tsien</u> to include the deazapurine taught by <u>Prober II</u> for the same reasons discussed above in Section IV.12. <u>See</u> Weinstock Decl. ¶¶ 80, 81.

14. <u>Ground for Challenge 14 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Rabani and Prober II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Rabani</u> combined with <u>Prober II</u> under 35 U.S.C. § 103. The disclosure of <u>Rabani</u> is shown above in Claim Chart 3, and the disclosure of <u>Prober II</u> is shown above in Section IV.12. Both <u>Rabani</u> and <u>Prober II</u> relate to polymerase-based DNA sequencing methods, and it would be obvious to modify the sequencing method of <u>Rabani</u> to include the deazapurine taught by <u>Prober II</u> for the same reasons as discussed above in Section IV.12. <u>See</u> Weinstock Decl. ¶¶ 82, 83.

15. <u>Ground for Challenge 15 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Stemple II and Prober II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Stemple II</u> combined with <u>Prober II</u> under 35 U.S.C. § 103. The disclosure of <u>Stemple II</u> is shown above in Claim Chart 4, and the disclosure of <u>Prober II</u> is shown above in Section IV.12. Both <u>Stemple II</u> and <u>Prober II</u> relate to polymerase-based DNA sequencing methods, and it would be obvious to modify the sequencing method of <u>Stemple II</u> to include the deazapurine taught by <u>Prober II</u> for the same reasons as discussed above in Section IV.12. <u>See</u> Weinstock Decl. ¶¶ 84, 85.

16. <u>Ground for Challenge 16 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Stemple III and Prober II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Stemple III</u> combined with <u>Prober II</u> under 35 U.S.C. § 103. The disclosure of <u>Stemple III</u> is shown above in Claim Chart 4, and the disclosure of <u>Prober II</u> is shown above in Section IV.12. Both <u>Stemple III</u> and <u>Prober II</u> relate to sequencing methods, and it would be obvious to modify the sequencing method of <u>Stemple III</u> to include the deazapurine taught by <u>Prober II</u> for the same reasons as discussed above in Section IV.12. <u>See</u> Weinstock Decl. ¶ 86.

17. <u>Ground for Challenge 17 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Dower and Seela I

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Dower</u> combined with <u>Seela I</u> under 35 U.S.C. § 103. <u>Seela I</u> issued February 14, 1989. <u>Seela I</u> qualifies as prior art against the '698 patent under 35 U.S.C. § 102(b) because it was patented more than one year before the '698 patent's earliest claimed filing date.

Seela I is directed toward nucleotide analogues to be used for sequencing methods. Seela I discloses use of a deazapurine for sequencing, for example, stating "The present invention provides 7-deaza-2'-deoxyguanosine nucleotides ... The present invention ... is also concerned with the use thereof in the sequencing of DNA." Seela I, Abstract. Seela I specifically teaches the use of 7-deaza-2'deoxyguanosine nucleotides in any polymerase-mediated DNA sequencing method. See Seela I, col. 4, lines 4-7. Seela I expressly teaches an advantage of using the 7-deaza-2'-deoxyguanosine stating "by using the compounds according to the present invention, a disturbance-free sequencing of cytosine-guanine-rich nucleic acids is possible." Seela I, col. 4, ll. 31-33. Thus, it would have been obvious for one of ordinary skill in the art to use the deaza nucleotides of Seela I with the polymerase medicated DNA sequencing method of Dower as expressly stated in Seela I. In addition, it would be obvious to combine the teachings of Dower with the 7-deaza-2'-deoxyguanosine disclosed in Seela I because it is

merely the use of known techniques to improve similar <u>Dower</u> systems and methods in the same way that the known features improve the methods and reagents of <u>Seela I</u>. Furthermore, it would have been obvious to use the features taught by <u>Seela I</u> for their intended purpose, as disclosed by <u>Seela I</u>, to enhance the capability of the <u>Dower</u> systems and methods in the same way they enhance the capability of the <u>Seela I</u> methods and reagents. Additionally, it would have been obvious to combine <u>Dower</u> and <u>Seela I</u> because the combination of known features with known systems and methods merely produces a predictable result. <u>See</u> Weinstock Decl. ¶¶ 87, 88. Further, combining references teaching sequencing by synthesis methods with references teaching the use of deaza-substituted nucleotide analogues was well known in the art and provided well known advantages. <u>See</u> Section III.2.

18. <u>Ground for Challenge 18 - Claims 1-7, 11-12, 14-15 and 17 of the</u> <u>'698 patent are invalid as obvious in view of Tsien and Seela I</u>

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Tsien</u> combined with <u>Seela I</u> under 35 U.S.C. § 103. The disclosure of <u>Tsien</u> is shown above in Claim Chart 1, and the disclosure of <u>Seela I</u> is shown above in Section IV.17. Both <u>Tsien</u> and <u>Seela I</u> relate to polymerase-mediated DNA sequencing methods, and it would be obvious to modify the sequencing method of <u>Tsien</u> to include the deazapurine taught by <u>Seela I</u> for the same reasons as discussed above in Section IV.17. <u>See</u> Weinstock Decl. ¶¶ 89, 90.

19. <u>Ground for Challenge 19 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Rabani and Seela I

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Rabani</u> combined with <u>Seela I</u> under 35 U.S.C. § 103. The disclosure of <u>Rabani</u> is shown above in Claim Chart 3, and the disclosure of <u>Seela I</u> is shown in Section IV.17. Both <u>Rabani</u> and <u>Seela I</u> relate to polymerase-mediated sequencing methods, and it would be obvious to modify the polymerase-mediated DNA sequencing method of <u>Rabani</u> to include the deazapurine taught by <u>Seela I</u> for the same reasons as discussed above in Section IV.17. <u>See</u> Weinstock Decl. ¶¶ 91-92.

20. <u>Ground for Challenge 20 - Claims 1-7, 11-12, 14-15 and 17 of the</u> <u>'698 patent are invalid as obvious in view of Stemple II and Seela I</u>

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Stemple II</u> combined with <u>Seela I</u> under 35 U.S.C. § 103. The disclosure of <u>Stemple II</u> is shown above in Claim Chart 4, and the disclosure of <u>Seela I</u> is shown above in Section IV.17. Both <u>Stemple II</u> and <u>Seela I</u> relate to sequencing methods, and it would be obvious to modify the polymerase-mediated DNA sequencing method of <u>Stemple II</u> to include the deazapurine taught by <u>Seela I</u> for the same reasons as discussed above in Section IV.17. <u>See</u> Weinstock Decl. ¶¶ 93, 94.

21. <u>Ground for Challenge 21 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Stemple III and Seela I

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Stemple III</u> combined with <u>Seela I</u> under 35 U.S.C. § 103. The disclosure of

<u>Stemple III</u> is shown above in Claim Chart 4, and the disclosure of <u>Seela I</u> is shown above in Section IV.17. Both <u>Stemple III</u> and <u>Seela I</u> relate to sequencing methods, and it would be obvious to modify the polymerase-mediated DNA sequencing method of <u>Stemple III</u> to include the deazapurine taught by <u>Seela I</u> for the same reasons as discussed above in Section IV.17. <u>See</u> Weinstock Decl. ¶ 95.

22. <u>Ground for Challenge 22 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Dower and Hobbs

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Dower</u> combined with <u>Hobbs</u> under 35 U.S.C. § 103. <u>Hobbs</u> issued September 10, 1991. <u>Hobbs</u> qualifies as prior art against the '698 patent under 35 U.S.C. § 102(b) because it was patented more than one year before t the '698 patent's earliest claimed filing date.

<u>Hobbs</u> "pertains to alkynylaminonucleotides and especially to their use in preparing *fluorescently-labeled nucleotides as chain-terminating substrates for a fluorescence-based DNA sequencing method*. " Hobbs, col. 1, ll. 14-17 (emphasis added). <u>Hobbs</u> expressly teaches various advantages of attaching the label group via a linker to the 7-deazapurine. For example, <u>Hobbs</u> teaches that "The *unnatural* <u>7-deazapurines</u> can be employed to attach the linker <u>without adding a net charge</u> to the base portion and thereby destabilizing the glycosidic linkage." <u>See Hobbs</u>, col. 11, ll. 1-4 (emphasis added). Further, <u>Hobbs</u> teaches that "the 7-position of the purine nucleotides provide labeled chain-terminating substrates that do not interfere excessively with the degree or fidelity of substrate incorporation." <u>Hobbs</u>, col. 8, ll. 57-60.

Thus, it would have been obvious for one of ordinary skill in the art to combine the teachings of Dower with the "unnatural 7-deazapurines" disclosed in Hobbs because it is merely the use of known techniques to improve similar Dower systems and methods in the same way that the known features improve the methods and reagents of Hobbs. Furthermore, it would have been obvious to use the features taught by Hobbs for their intended purpose, as disclosed by Hobbs, to enhance the capability of the Dower systems and methods in the same way they enhance the capability of the Hobbs methods and reagents. Additionally, it would have been obvious to combine Dower and Hobbs because the combination of known features with known systems and methods merely produces a predictable result. See Weinstock Decl. ¶ 96, 97. Further, combining references teaching sequencing by synthesis methods with references teaching the use of deazasubstituted nucleotide analogues was well known in the art and provided well known advantages. See Section III.2.

23. <u>Ground for Challenge 23 - Claims 1-7, 11-12, 14-15 and 17 of the</u> <u>'698 patent are invalid as obvious in view of Tsien and Hobbs</u>

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Tsien</u> combined with <u>Hobbs</u> under 35 U.S.C. § 103. The disclosure of <u>Tsien</u> is shown above in Claim Chart 1, and the disclosure of <u>Hobbs</u> is discussed above in

Section IV.22. Both <u>Tsien</u> and <u>Hobbs</u> relate to polymerase mediated sequencing methods, and it would be obvious to modify the sequencing method of <u>Tsien</u> to include the deazapurine nucleotides taught by <u>Hobbs el</u> for the same reasons as discussed above in Section IV.22. <u>See</u> Weinstock Decl. ¶¶ 98, 99.

24. <u>Ground for Challenge 24 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Rabani and Hobbs

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Rabani</u> combined with <u>Hobbs</u> under 35 U.S.C. § 103. The disclosure of <u>Rabani</u> is shown above in Claim Chart 3, and the disclosure of <u>Hobbs</u> is discussed above in Section IV.22. Both <u>Rabani</u> and <u>Hobbs</u> relate to polymerase mediated sequencing methods, and it would be obvious to modify the sequencing method of <u>Rabani</u> to include the deazapurine taught by <u>Hobbs el</u> for the same reasons as discussed above in Section IV.22. <u>See</u> Weinstock Decl. ¶¶ 100, 101.

25. <u>Ground for Challenge 25 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Stemple II and Hobbs

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Stemple II</u> combined with <u>Hobbs</u> under 35 U.S.C. § 103. The disclosure of <u>Stemple II</u> is shown above in Claim Chart 4, and the disclosure of <u>Hobbs</u> discussed above in Section IV.22. Both <u>Stemple II</u> and <u>Hobbs</u> relate to polymerase mediated sequencing methods, and it would be obvious to modify the sequencing method of <u>Stemple II</u> to include the deazapurine taught by <u>Hobbs el</u> for the same reasons as discussed above in Section IV.22. <u>See</u> Weinstock Decl. ¶¶ 102, 103.

26. <u>Ground for Challenge 26 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Stemple III and Hobbs

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Stemple III</u> combined with <u>Hobbs</u> under 35 U.S.C. § 103. The disclosure of <u>Stemple III</u> is shown above in Claim Chart 4, and the disclosure of <u>Hobbs</u> discussed above in Section IV.22. Both <u>Stemple III</u> and <u>Hobbs</u> relate to polymerase mediated sequencing methods, and it would be obvious to modify the sequencing method of <u>Stemple III</u> to include the deazapurine taught by <u>Hobbs el</u> for the same reasons as discussed above in Section IV.22. <u>See</u> Weinstock Decl. ¶ 104.

27. <u>Ground for Challenge 27 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Dower and Seela II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Dower</u> combined with <u>Seela II</u> under 35 U.S.C. § 103. <u>Seela II</u> issued December 1, 1998. <u>Seela II</u> qualifies as prior art against the '698 patent under 35 U.S.C. § 102(b) because it was patented more than one year before the '698 patent's earliest claimed filing date.

<u>Seela II</u> discloses multiple uses and formulations for nucleotides having a 7-deazpurine base, as shown in this annotated example:

<u>Seela II</u>, col. 15, ll. 19-31. <u>Seela II</u> specifies that "R15 and R16 are, independently of each other ... where appropriate <u>via a further linker</u>, to one or more groups which ... <u>serve as labeling for a DNA or RNA probe</u> or, when the oligonucleotide analog hybridizes to the target nucleic acid, attack the latter while binding, crosslinking or cleaving." <u>Id.</u>, col. 15, ll. 41-67. <u>Seela II</u> states that the prior art "EP 251 786 <u>discloses 7-deazapurine nucleotides</u> ... which possess an alkynylamino group at the 7-purine position. The alkynylamino group serves as a <u>linker by way of which fluorescent labeling molecules can be coupled to the</u> <u>nucleotide</u>." <u>Seela II</u>, col. 15, ll. 6-11.

Seela II discloses that:

"[t]he use of the novel 7-deazapurine nucleotides for sequencing nucleic acids is advantageous for several reasons. Thus, the band compression which can often be observed in GC-rich nucleotide regions in the Sanger sequencing method (dideoxy technique), and which hinders correct determination of the nucleotide sequence, is either eliminated or at least reduced. In addition, the double stranded nucleic acids which are synthesized by DNA polymerases or RNA polymerases during the sequencing are stabilized by the incorporation of 7-, 8- or 7,8- substituted 7-deazapurine bases. It is consequently more advantageous to use substituted 7-deazapurine nucleotides than to use unsubstituted 7-deazaguanosine nucleotides, which are customarily employed in nucleic acid sequencing in order to eliminate band compressions in GC-rich DNA stretches (EP 65 212536). A further advantage of using substituted 7-deazapurine nucleotides in the sequencing is that fluorescent residues in the form of reporter groups ... can be introduced onto the substituents in a series of subsequent reactions. In addition, the incorporation of self-fluorescent, substituted 7-deazapurine bases into oligonucleotides renders it possible to detect the latter directly by way of the self-fluorescence of the substituted 7-deazapurine bases." <u>Seela II</u>, col. 16, 1. 50 - col. 17, 1. 8.

Thus, it would have been obvious for one of ordinary skill in the art to modify the polymerase-mediated DNA sequencing method of <u>Dower</u> to utilize the "novel 7-deazapurine nucleotides" disclosed in <u>Seela II</u> because it is merely the use of known techniques to improve similar <u>Dower</u> systems and methods in the same way that the known features improve the methods and reagents of <u>Seela II</u>. Furthermore, it would have been obvious to use the features taught by <u>Seela II</u> for their intended purpose, as disclosed by <u>Seela II</u>, to enhance the capability of the <u>Dower</u> systems and methods in the same way they enhance the capability of the <u>Seela II</u> methods and reagents. Additionally, it would have been obvious to combine <u>Dower</u> and <u>Seela II</u> because the combination of known features with known systems and methods merely produces a predictable result. <u>See</u> Weinstock Decl. ¶¶ 105, 106. Further, combining references teaching sequencing by synthesis methods with references teaching the use of deaza-substituted nucleotide analogues was well known in the art and provided well known advantages. <u>See</u> Section III.2.

28. <u>Ground for Challenge 28 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Tsien and Seela II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Tsien</u> combined with <u>Seela II</u> under 35 U.S.C. § 103. The disclosure of <u>Tsien</u> is shown above in Claim Chart 1, and the disclosure of <u>Seela II</u> is shown above in Section IV.27. Both <u>Tsien</u> and <u>Seela II</u> relate to polymerase-mediated DNA sequencing methods, and it would be obvious to modify the sequencing method of <u>Tsien</u> to include the deazapurine taught by <u>Seela II</u> for the same reasons as discussed above in Section IV.27. <u>See</u> Weinstock Decl. ¶¶ 107, 108.

29. <u>Ground for Challenge 29 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Rabani and Seela II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Rabani</u> combined with <u>Seela II</u> under 35 U.S.C. § 103. The disclosure of <u>Rabani</u> is shown above in Claim Chart 3, and the disclosure of <u>Seela II</u> is shown above in Section IV.27. Both <u>Rabani</u> and <u>Seela II</u> relate to polymerase mediated DNA sequencing methods, and it would be obvious to modify the method of <u>Rabani</u> to include the deazapurine taught by <u>Seela II</u> for the same reasons as discussed above in Section IV.27. <u>See</u> Weinstock Decl. ¶¶ 109, 110.

30. <u>Ground for Challenge 30 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Stemple II and Seela II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Stemple II</u> combined with <u>Seela II</u> under 35 U.S.C. § 103. The disclosure of <u>Stemple II</u> is shown above in Claim Chart 4, and the disclosure of <u>Seela II</u> is shown above in Section IV.27. Both <u>Stemple II</u> and <u>Seela II</u> relate to polymerase mediated DNA sequencing methods, and it would be obvious to modify the sequencing method of <u>Stemple II</u> to include the deazapurine taught by <u>Seela II</u> for the same reasons as discussed above in Section IV.27. <u>See</u> Weinstock Decl. ¶¶ 111, 112.

31. <u>Ground for Challenge 31 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Stemple III and Seela II

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Stemple III</u> combined with <u>Seela II</u> under 35 U.S.C. § 103. The disclosure of <u>Stemple III</u> is shown above in Claim Chart 4, and the disclosure of <u>Seela II</u> is discussed above in Section IV.27. Both <u>Stemple III</u> and <u>Seela II</u> relate to polymerase mediated DNA sequencing methods, and it would be obvious to modify the sequencing method of <u>Stemple III</u> to include the deazapurine taught by <u>Seela II</u> for the same reasons as discussed above in Section IV.27. <u>See</u> Weinstock Decl. ¶ 113.

32. <u>Ground for Challenge 32 - Claims 1-7, 11-12, 14-15 and 17 of the</u> '698 patent are invalid as obvious in view of Rosenthal and Tsien

Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are also obvious in view of <u>Rosenthal</u> combined with <u>Tsien</u> under 35 U.S.C. § 103. <u>Rosenthal</u> published October 28, 1993 and, therefore, qualifies as prior art against the '698 patent under 35 U.S.C. § 102(b) because it was patented more than one year before the '698 patent's earliest claimed filing date.

The disclosure of <u>Tsien</u> is shown above in Claim Chart 1. <u>Rosenthal</u> teaches "a method for sequencing DNA" in which "[t]he primer is extended by a DNA polymerase in the presence of a single labeled nucleotide, either A, C, G or T." <u>Rosenthal</u>, page 1, ll. 1-2, page 9, ll. 5-6. <u>Rosenthal</u> teaches a "sequencing method which allows the rapid, unambiguous sequencing of DNA at low cost. The requirements for such a system are that ... it should allow several DNA clones to be processed in parallel." <u>Rosenthal</u>, page 6, ll. 15-26. <u>Rosenthal</u> states "[p]referably, the template is bound to a solid-phase support" <u>Rosenthal</u>, page 8, ll. 31-32. <u>Rosenthal</u> teaches a method in which 3'-OH blocked and fluorescent labeled dNTPs include a blocking group on "the 3' moiety of the deoxyribose group of the labeled nucleotide may be used to prevent nonspecific incorporation." <u>Rosenthal</u>, page 11, ll. 3-12. <u>Rosenthal</u> specifically teaches a sequencing by synthesis method and system identified as "scheme 5" that utilizes 3'-OH blocked and labeled nucleotides and expressly identifies that "scheme 5" may be implemented in a "chip array" format. <u>See Rosenthal</u>, page 20, ll. 6 - page 22, ll. 21. Combined, <u>Rosenthal</u> and <u>Tsien</u> disclose, teach or suggest all of the elements of claims 1-7, 11-12, 14-15 and 17 of the '698 patent. It would be obvious to modify the sequencing system of <u>Rosenthal</u> based on various teachings of <u>Tsien</u> (e.g., to include deazapurine-based dNTPs, dNTPs having a label attached to directly to the nucleotide base, etc.) at least to improve the system and methods of <u>Rosenthal</u> in the same way as they improve the systems and methods of <u>Tsien</u>. <u>See</u> Weinstock Decl. ¶¶ 114, 115.

V. <u>CONCLUSION</u>

The prior art documents presented in the above Petition and the arguments above demonstrate that Petitioner is reasonably likely to prevail regarding at least one of Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are as required by as required by 35 U.S.C. § 314(a). At least Claims 1-7, 11-12, 14-15 and 17 of the '698 patent are not patentable over the prior art documents cited herein. Accordingly, the Office is requested to grant this Petition and to initiate *inter partes* review with special dispatch. Petitioner reserves all rights and defenses available including, without limitation, defenses as to invalidity and unenforceability. By filing this Petition in compliance with applicable statutes, rules, and regulations, Petitioner does not represent, agree, or concur that the '698 patent is enforceable or valid under any other provision of title 35 of the U.S. Code, common law or equitable law not expressly addressed herein.

Date: September 16 2012

Respectfully submitted,

By: <u>/Robert A. Lawler/</u> Robert A. Lawler USPTO Reg. No. 62,075 Attorney for Petitioner

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re U.S. Patent of:	Jingyue Ju et al.
Title:	MASSIVE PARALLEL METHOD FOR DECODING DNA AND RNA
Patent No.:	7,713,698
Issue Date:	May 11, 2010
IPR Proceeding No.:	To be determined
IPR Proceeding Filing Date	September 16, 2012
Attorney Docket No.:	048522-0027-698
Customer No.:	22922

Mail Stop PATENT BOARD Patent Trial and Appeal Board United States Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

CERTIFICATE OF SERVICE

Copies of the following were sent by United States Postal Service Express

Mail® this 16th day of September 2012 to Cooper and Dunham, LLP, 30

Rockefeller Plaza, 20th Floor, New York, NY 10112:

1. Motion to Waive Petition Page Limit Under 37 C.F.R. §42.24(a)(2);

and

2. Version of Petition for *Inter Partes* Review of U.S. Patent No.

7,713,698 exceeding 60 page limit.

Dated this 16th day of September 2012.

Reinhart Boerner Van Deuren s.c. 1000 North Water Street Suite 1700 Milwaukee, WI 53202 Telephone: 414-298-1000 Facsimile: 414-298-8097 Nicole A. Wilson nwilson@reinhartlaw.com

BY: <u>/Nicole A. Wilson/</u> Reg. No. 66,672

Mailing Address: P.O. Box 2965 Milwaukee, WI 53201-2965

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re U.S. Patent of:	Jingyue Ju et al.
Title:	MASSIVE PARALLEL METHOD FOR DECODING DNA AND RNA
Patent No.:	7,713,698
Issue Date:	May 11, 2010
IPR Proceeding No.:	To be determined
IPR Proceeding Filing Date	September 16, 2012
Attorney Docket No.:	048522-0027-698
Customer No.:	22922

Mail Stop PATENT BOARD Patent Trial and Appeal Board United States Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

CERTIFICATE OF SERVICE

Copies of the following were sent by United States Postal Service Express

Mail® this 16th day of September 2012 to Medlen and Carroll, LLP, 100

Grandview Road, Suite 403, Braintree, MA 02184:

1. Motion to Waive Petition Page Limit Under 37 C.F.R. §42.24(a)(2);

and

2. Version of Petition for *Inter Partes* Review of U.S. Patent No.

7,713,698 exceeding 60 page limit.

Dated this 16th day of September 2012.

Reinhart Boerner Van Deuren s.c. 1000 North Water Street Suite 1700 Milwaukee, WI 53202 Telephone: 414-298-1000 Facsimile: 414-298-8097 Nicole A. Wilson nwilson@reinhartlaw.com

BY: <u>/Nicole A. Wilson/</u> Reg. No. 66,672

Mailing Address: P.O. Box 2965 Milwaukee, WI 53201-2965

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re U.S. Patent of:	Jingyue Ju et al.
Title:	MASSIVE PARALLEL METHOD FOR DECODING DNA AND RNA
Patent No.:	7,713,698
Issue Date:	May 11, 2010
IPR Proceeding No.:	To be determined
IPR Proceeding Filing Date	September 16, 2012
Attorney Docket No.:	048522-0027-698
Customer No.:	22922

Mail Stop PATENT BOARD Patent Trial and Appeal Board United States Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

CERTIFICATE OF SERVICE

Copies of the following were sent by United States Postal Service Express

Mail® this 16th day of September 2012 to Shaw Keller LLP, 300 Delaware

Avenue, Suite 1120, Wilmington, DE 19801:

1. Motion to Waive Petition Page Limit Under 37 C.F.R. §42.24(a)(2);

and

2. Version of Petition for *Inter Partes* Review of U.S. Patent No.

7,713,698 exceeding 60 page limit.

Dated this 16th day of September 2012.

Reinhart Boerner Van Deuren s.c. 1000 North Water Street Suite 1700 Milwaukee, WI 53202 Telephone: 414-298-1000 Facsimile: 414-298-8097 Nicole A. Wilson nwilson@reinhartlaw.com

BY: <u>/Nicole A. Wilson/</u> Reg. No. 66,672

Mailing Address: P.O. Box 2965 Milwaukee, WI 53201-2965